
  

  

Abstract—Obstructive Sleep Apnea (OSA) is currently 
diagnosed by a full nocturnal polysomnography (PSG), a very 
expensive and time-consuming method. In previous studies we 
were able to distinguish patients with OSA through formant 
frequencies of breath sound during sleep. In this study we 
aimed at identifying OSA patients from breath sound analysis 
during wakefulness. The respiratory sound was acquired by a 
tracheal microphone simultaneously to PSG recordings. We 
selected several cycles of consecutive inspiration and exhalation 
episodes in 10 mild-moderate (AHI<30) and 13 severe 
(AHI>=30) OSA patients during their wake state before getting 
asleep. Each episode’s formant frequencies were estimated by 
linear predictive coding. We studied several formant features, 
as well as their variability, in consecutive inspiration and 
exhalation episodes. In most subjects formant frequencies were 
similar during inspiration and exhalation. Formant features in 
some specific frequency band were significantly different in 
mild OSA as compared to severe OSA patients, and showed a 
decreasing correlation with OSA severity. These formant 
characteristics, in combination with some anthropometric 
measures, allowed the classification of OSA subjects between 
mild-moderate and severe groups with sensitivity (specificity) 
up to 88.9% (84.6%) and accuracy up to 86.4%. In conclusion, 
the information provided by formant frequencies of tracheal 
breath sound recorded during wakefulness may allow 
identifying subjects with severe OSA. 

I. INTRODUCTION 

Obstructive Sleep Apnea (OSA) is a widely prevalent 
sleep disorder in the general population. Its clinical 
implications range from sleep disruption and excessive 
daytime sleepiness, to suspected long-term cardiovascular 
implications [1]. The standard method for OSA diagnosis is a 
full night polysomnography (PSG), an expensive and labor 
procedure, which has long wait lists in public health services. 

Many alternatives have been reported for the early 
screening of OSA, ranging from the use of type 3-4 home 
apnea monitors [2], to the indirect identification of OSA from 
the analysis of a single channel such as oxygen saturation [3], 
snoring sound [4] or nocturnal breath sound [5]. Recently, 
many efforts have been directed to OSA severity detection 
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during wakefulness, which go beyond the early pioneering 
attempts of our group [6]: advanced speech analysis methods 
[7], a diurnal negative expiratory pressure test to predict 
collapsibility during sleep [8], oronasal airway pressure 
analysis [9], or tracheal breath sound analysis [10]. 

Several differences are known to exist in the upper airway 
(UA) of OSA as compared to normal subjects, such as higher 
airway collapsibility, greater force of the genioglossus and 
musculus uvulae, smaller cross-sectional area in the 
retropalatal region [11]. A recent computed tomography 
study has confirmed statistically significant correlations 
between the AHI and the UA minimal cross-sectional area, 
both during sleep and wakefulness [12]. The UA 
characteristics can be indirectly studied through sound 
formant frequencies, which reflect the resonances produced 
by the UA onto the sound. Formant frequencies of speech, 
snoring and nocturnal breath sound previously allowed the 
identification of OSA to several degrees [4-7]. Our 
hypothesis in the present work is that the UA differences 
between normal and OSA subjects can be reflected in the 
formant frequencies of breath sound during wakefulness. 

II. MATERIAL AND METHODS 

A. Signal Acquisition 
Respiratory sound was acquired simultaneously to full-

night PSG studies at Germans Trias i Pujol Universitary 
Hospital by a single-channel device (Snoryzer Uno, Sibel 
S.A., Barcelona, Spain). The external sound was recorded 
using a unidirectional electret condenser microphone placed 
over the trachea at the level of the cricoid cartilage and 
coupled to the skin through a conic air cavity. The external 
sound signal was amplified and filtered between 70 and 2000 
Hz, and then digitized at a sampling rate of 5000 Hz with a 
12-bit A/D converter. 

B. Sound Synchronization to the PSG channels 
In a typical PSG study, the two recording systems 

(polysomnograph and external sound recorder) are not 
simultaneously turned on. This fact introduces a variable and 
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Fig. 1. Overview of the semi-automatic delay estimation algorithm between 

the PSG channels and the external tracheal sound channel (EXT). 
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undesired delay between their respective signal channels. To 
make sure that we selected breath sound episodes from a 
subject in the wake stage, a hypnogram signal perfectly 
synchronized to the sound channel was necessary. The 
synchronization was made in a semi-automatic way as 
follows (Fig.1): A sound signal fragment with breathing 
activity was manually selected. The lower quality PSG sound 
channel was extracted and cross-correlated with the external 
sound after a resampling process. The delay was then 
estimated as the lag of the correlation maximum. In case this 
maximum was not clearly visible, a new signal fragment was 
selected. The overall process is schematically depicted in 
figure 1. Table I shows the range of delay values found in the 
subjects of our database.  

C. Selection of Episodes and Subject Database 
Respiratory sound and PSG signals were simultaneously 

recorded and synchronized in 51 subjects suspected from 
OSA. For each subject, the hypnogram signal allowed us to 
identify the period of wake state before getting asleep. In this 
period, we selected at least one fragment of external sound 

that contained four to six consecutive inspiration and 
exhalation episode cycles (Fig. 2). Several subjects had to be 
discarded because they had a very short wake state 
(especially those with OSA) and/or their breathing sound had 
a low signal to noise ratio. The characteristics of the final 
database with 23 subjects are shown in Table I.  

D. Signal Analysis 
Each breathing episode was characterized through the 

formant frequencies of its spectral envelope. Due to its local 
prediction error property, autoregressive (AR) linear 
prediction was used for spectral envelope estimation. Linear 
prediction coefficients were calculated by the autocorrelation 
method as used previously in sleep [5]. For each formant –the 
local maxima of the spectral envelope– its frequency (F), 
relative amplitude (M) and attenuation (L) were calculated, 
as depicted in Fig.3.  

In our previous works with snoring sound, we found that 
the local variability of the sound features in consecutive 
episodes enhanced the performance of OSA classification 
algorithms [4]. Therefore in this work, for each episode’s 
formant parameter Pi ! {Fi, Li, Mi} we have also calculated 
its breath to breath variability defined as the standard 
deviation SdP of the parameter’s first difference dPi=Pi-Pi-1 
in consecutive breathing cycles. 

 
TABLE I 

CHARACTERISTICS OF THE DATABASE 

  AHI<30 AHI!30 pval 

Subjects 
(N=23) M/F 8/2 12/1 ---- 

Age  
(yr) 

m 48.9 56.3 
0.025 

s 11.4 7.9 

BMI 
(kg/m2) 

m 26.5 29.8 
0.051 

s 3.2 3.0 

AHI  
(h-1) 

m 16.0 52.5 
<0.001 

s 9.3 16.0 

Delay 
(s) 

min 16.1 18.4 
---- med 20.7 26.1 

max 120.0 424.9 
M=Males, F=Females, m=mean, s=standard deviation, 

min=minimum, max=maximum, med=median, BMI=Body Mass Index, 
AHI=Apnea Hypopnea Index, pval=Statistical Significance of the Mann-
Whitney U test between both groups. 

 
 

 

  

 
Fig. 2.  After being synchronized with the sound signal, the hypnogram signal (upper panel) allowed us to identify the first period of wake state (stage 0) before 
the subject fell asleep. In this period, we selected several excerpts of consecutive inspiration and exhalation breathing cycles (lower panel). 
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Fig. 3. Each formant in the spectral envelope of the breath sound is 
characterized by its frequency F, relative amplitude M and attenuation L. 
  

4233



  

III. RESULTS 

The spectral envelope of consecutive breathing episodes 
had a similar morphology. Formant frequencies of inspiration 
and exhalation appeared in the same frequency bands in most 
subjects. Each breathing episode contained between four and 
six formant frequencies. Figure 4 shows the spectral envelope 
evolution in consecutive inspiration (solid) and exhalation 
(dashed) episodes of two subjects from the database. A 
distinct behavior can be observed in the formant frequency 
located the fourth frequency band B4=(925,1400)Hz between 
a mild OSA subject  and a severe OSA subject (figure 4a,b).  

Formant frequencies were studied in the six frequency 
bands defined in our previous study [5]. For each subject, 
inspiration and exhalation episodes were analyzed separately. 
In the inspiration cycle, both the frequency F4 and the 
attenuation M4 of the formant located in band B4 had a 
moderate decreasing correlation with OSA severity as 
measured by the AHI (r=-0.47 and r=-0.53 respectively, 
p<0.05, see Figure 5a,c). Frequency F4 was significantly 
lower in the inspiratory episodes of severe OSA patients 
(AHI!30) than in mild-moderate ones (F4=1170.66±92.25Hz 
versus F4=1082.99±51.66Hz, p=0.036, see Figure 4 and 
Figure 5b). In the exhalation cycle the same tendencies were 
observed, but they did not reach statistical significance. 

Subjects in the two severity groups were classified using 
Linear Discriminant Analysis (LDA). Among all the formant 
parameters available, the algorithm automatically selected 
formant frequency F4 and the breath-to-breath variability of 
its amplitude, SdM4. With only these two parameters, a 
sensitivity of 76.9%, specificity of 77.8% and accuracy of 
77.3% were obtained in the leave one out cross-validation 
(Table II, Model 1). When the BMI was allowed to enter the 
model, classification performance raised to 84.6% sensitivity, 
88.9% specificity and 86.4% accuracy (Table II, Model 2). In 
the cross-validation, specificity was maintained, but 
sensitivity decreased to 76.9% and accuracy to 81.8%. 

IV. DISCUSSION 
In a previous study, we showed that formant frequencies 

of normal breath sound were useful to discriminate OSA 
patients during sleep [4]. The results of the present study 
indicate that formant frequencies of breath sound may also 

allow identifying severe OSA patients during wakefulness. 
This technique seems to capture some of the differences that 
are known to exist between the airways of OSA as compared 
to normal subjects [11]. The spectral envelope of sleeping 
breath sound was previously found to contain a significantly 
lower formant frequency below 300Hz in subjects with 
AHI!10. During wakefulness, this tendency is not observed, 
but about half of the subjects in the present study did not 
show any formant frequency below 300Hz. On the other 
hand, the formant located between 925Hz and 1400Hz shows 
a significantly lower frequency in subjects with AHI!30, 
something that was not previously observed during sleep [5]. 
Cephalometric studies indicate that the vocal tract is longer in 
OSA than in non-OSA subjects [12]. This could partially 
explain why some posterior vocal tract resonances of both 
speech vowels and breath sound have lower formant 
frequencies in OSA patients during wakefulness [13]. 

As mentioned in the introduction, several authors have 
previously addressed the identification of OSA subjects 
during wakefulness. Our group conducted an early pioneering 
study of speech vowels in a group of 18 OSA and 10 
controls. Significant differences between both groups were 
found in the maximum frequency of the spectral harmonics 
of /i/ and /e/ Spanish vowels, and in the number of harmonics 
in the /i/ Spanish vowel [6]. Similarly, lower formant 
frequency values have also been reported in the English 
speech vowels /a/, /i/ and /u/ of subjects with OSA [13]. 
Recently, a greater number of acoustic speech features of 67 
OSA (AHI!5) and 26 non-OSA (AHI<5) subjects have been 

 

  TABLE II 
LDA CLASSIFICATION RESULTS 

MODEL 1 (without BMI) 

 

MODEL 2 (with BMI) 

  
Predicted Group 

(%) 
   

Predicted Group 
(%) 

 

 AHI <30 !30  AHI <30 !30 
Original 
Group 

(%) 

<30 77.8 22.2 Original 
Group 

(%) 

<30 88.9 11.1 

!30 20.0 76.9 !30 15.4 84.6 

ACC = 77.3%  ACC = 86.4% 
 

ACC=Accuracy.  LDA = Linear Discriminant Analysis. 

          
   (a)                         (b)   

Fig. 4.  Spectral envelope evolution in consecutive inspiration (solid) and exhalation (dashed) episodes of a mild OSA subject (a) and a severe OSA subject 
(b). We can appreciate a distinct behavior of the formant frequency located between 925Hz and 1400Hz, which is clearly lower in the more severe subject.  
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studied [7]. Gaussian mixture models allowed the 
classification of subjects with sensitivity of 79% (84%) and 
specificity of 83% (86%) for male (female) subjects, 
respectively [7]. Among the discriminative features, the vocal 
tract length and the linear predictive coefficients were 
selected. Therefore, it seems that autoregressive modeling of 
the sound recorded in the upper airway during wakefulness –
be it either speech or breath sound- conveys information 
relative to the different upper airway dynamics in subjects 
with and without OSA. 

Airway pressure recordings have also been used for the 
screening of OSA [8,9]. The upper airway collapsibility has 
been evaluated by a negative expiratory pressure test. Flow 
drop and expiratory volume in the first 2s were statistically 
different between 24 normal subjects (AHI<5) and 24 severe 
OSA patients (AHI!30). Severe OSA subjects could be 
identified with sensitivity (specificity) of 95.8% (95.8%) [8]. 
In this study, both populations were clearly non-overlapping 
(AHI<5 vs AHI!30). Short recordings of oronasal airway 
pressure obtained from PSG during the awake period were 
also studied in 20 non-OSA (AHI<5) and 21 OSA (AHI!15) 
subjects [9]. An index measure based on the Hilbert 
oscillatory modes allowed the detection of OSA with a 
sensitivity (specificity) of 81% (95%).  

Our present results have been obtained in a more reduced 
subject database, but the population has a single severity cut-
point at AHI=30. Despite this clear overlapping (see Figure 
5b), severe OSA subjects have been identified with 
sensitivity (specificity) up to 88.9% (84.6%). Those figures 
are expected to reduce as the population increases, as it is the 
case in a recent study of breath sound intensity in 30 mild 
OSA (AHI<15) and 23 severe OSA (AHI!15) [10]. In that 
study, two sound features of the inspiratory breath sound -the 
median average power and the kurtosis- allowed the 
classification of patients with a sensitivity (specificity) of 
85% (81.2%), respectively. 

In this study the external sound signal was synchronized 
with the full PSG recordings. This allows a simultaneous 
analysis of breath sound features during wakefulness and 
sleep. However, the present study has some limitations: this 
setup limits the wakefulness analysis to the amount of time 
that a subject spends initially awake. Therefore, a portion of 
the originally available recordings (especially among severe 
OSA) had to be discarded because these subjects fell quickly 
asleep. The results of the present study need further 
validation in a database with a greater number of subjects. 

V. CONCLUSION 
Some formant frequencies of normal breath sound have a 

distinct behavior in mild-moderate than in severe OSA 
subjects during wakefulness. In combination with 
anthropometric information such as the BMI, and other 
diurnal parameters such as breath sound intensity, speech or 
airway pressure measures, they can aid to the screening of 
OSA, based on the study of the UA acoustic characteristics. 
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Fig. 5.  The amplitude (M4, panel c) and frequency (F4, panels a) of the fourth formant of the breathing sound has a decreasing tendency with the AHI. This 
formant frequency is significantly lower in the inspiratory episodes of severe OSA subjects as compared to mild-moderate OSA subjects during wakefulness. 
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