
  

  

Abstract— In this paper, we introduce a new tongue-training 
system that can be used for improvement of the tongue’s range 
of motion and muscle strength after dysphagia. The training 
process is organized in game-like manner. Initially, we analyzed 
surface electromyography (EMG) signals of the suprahyoid 
muscles of five subjects during tongue-training motions. This 
test revealed that four types tongue training motions and a 
swallowing motion could be classified with 93.5% accuracy.  
Recognized EMG signals during tongue motions were designed 
to allow control of a mouse cursor via intentional tongue 
motions. Results demonstrated that simple PC games could be 
played by tongue motions, achieving in this way efficient, 
enjoyable and pleasant tongue training. Using the proposed 
method, dysphagia patients can choose games that suit their 
preferences and/or state of mind. It is expected that the 
proposed system will be an efficient tool for long-term tongue 
motor training and maintaining patients’ motivation. 

I. INTRODUCTION 

Statistics show that in the 2011 fiscal year, pneumonia was 
the third largest cause of death in Japan. More than 90% of 
those who died of pneumonia in that period were elderly 
people. About half of them had developed aspiration 
pneumonia caused by a swallowing disorder (dysphagia). 
Around 30% of the people over 75 years of age had dysphagia. 
The number of dysphagia sufferers in Japan is estimated as 
700–800 thousand. The “eating” function has significant role 
in daily life: people get nutrients necessary to support life, they 
experience taste and enjoy conversations while eating. 
Dysphagia affects these fundamental pleasures and degrades 
significantly patients’ quality of life (QOL). Therefore, 
dysphagia is regarded as a profound social problem in Japan, 
especially affecting the aging population. 

Rehabilitation of dysphagia patients is based on two main 
approaches: direct training by using food and indirect training 
without using food. One type of indirect training is tongue 
motor training, which is aimed to improve the range of tongue 
motion, muscle force, coordination, and food transport 
function [1-5]. This training approach for oral function 
improvement is based on repetitive intentional tongue motions 
such as moving the tongue to the right and left, and up and 
down while keeping the mouth open during the exercise. 
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Tongue motion promotes saliva production and lubricates 
mastication and swallowing during eating. For some 
dysphagia patients tongue motion training is suggested as a 
warming-up exercise before eating. However, tongue motor 
training is a monotonous process and maintaining patient’s 
motivation to such training is difficult. In this study, we 
present a novel system for tongue motor training that is 
designed in a game-like manner to maintain patient’s interest 
during training. 

II. TONGUE MOTOR TRAINING SUPPORT SYSTEM 
Figure 1 presents an outline of the proposed tongue motor 

training support system. Surface electromyography (EMG) 
signals of the suprahyoid muscles are analyzed and converted 
into relevant signals for cursor movement and controlling the 
therapy computer game. Below we explain our approach for 
classification of the tongue-training motions and game control 
organization. 

 
Figure 1.  Tongue motor training support system. 

 

A.  Classification of tongue training motions 
Tongue motor training includes intentional tongue 

motions such as moving the tongue tip to the right and left and 
up and down, as illustrated in Figure 2. In this study, tongue 
training motions and muscle active state during the training 
session are monitored via analysis of the surface 
Electromyography (EMG) signals of the suprahyoid muscles 
(digastric muscle, stylohyoid muscle, mylohyoid muscle, and 
geniohyoid muscle) captured at the underside of the jaw. In 
general, tongue motion is developed by the intrinsic muscles 
of the tongue that control the tongue shape and direction of 
the tongue tip, and the extrinsic muscles that control the 
tongue protrusion and retraction. For realization of tongue 
motion, suprahyoid muscles maintain the hyoid supporting 
the root of the tongue in appropriate positions according to 
the movements of the intrinsic muscle of the tongue and the 
extrinsic muscles of the tongue. Therefore, an efficient 
 

 
 

Figure 2.  Tongue training motions and swallowing motion. 
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Figure 3.  Classification method of tongue-training motions. 

 
classification of the tongue motions can be achieved by careful 
consideration the coordinated motion of the suprahyoid 
muscles [6, 7]. 

Figure 3 shows the procedures for classification of the 
tongue training motions. In this study we used surface 
electrodes that include a 22-channel active electrode mount 
attached at the underside of the jaw, a 1-channel active 
electrode attached at the right earlobe, and a reference 
electrode attached at the left earlobe. The mount contained a 
matrix of 22 active silver electrodes (φ 2 mm) placed at 
intervals of 12.5 mm. Potential differences between the 
electrode attached to the right earlobe and the electrode at the 
underside of the jaw were derived by bipolar leading method 
where the left earlobe was regarded as the reference potential. 
Then, features were extracted from the EMG signals in the 128 
ms frame. The frame was shifted for 16 ms. For extraction of 
the signal features, we need the root mean square (RMS) and 
cepstrum coefficients (CC). These were calculated by using 
the approach presented in [8-10].  

The RMS corresponds to the magnitude of the EMG 
signals and can be expressed by their given with the following 
equation: 
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Therein, EMG1(n) signifies the EMG signals, p stands for 
frame number, N denotes the number of samples in 1 frame, 
and l represents the number of channels of EMG signal. 

To determine the CC coefficients, we refer to the Fourier 
transform of EMG1(n) that can be expressed as: 
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then, the cepstral coefficients can be calculated from the 
following equation: 
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We use cepstral analysis to separate the spectral envelope 
from the fine structure. Features of the spectral envelope 
appear in low-order coefficients and features of the fine 
structure appear in high-order coefficients. To define the CC 
features, we use the low-order coefficients up to the fifth 
coefficient. 

Next, we create learning data by defining the motion class 
as a feature vector composed by the RMS features and the CC 
features. The motion label is defined by threshold processing 
of the summation of the RMS features for all EMG channels. 
The feature vector and the motion label are used as a teacher 

signal for training of the weights of the connections among all 
neurons in the neural network. During the procedure for 
motion classification, threshold processing and majority 
processing are applied for smoothing the output signals of the 
neural network output layer. 

B.  Game operation using tongue-training motion 
As commented above, classified tongue-training motions 

are used for control of the PC cursor. For the experiments, we 
used an input device designed for people with disabilities 
(Rakurakumouse II wireless; KoKoTo STEP Organization). 
The Rakurakumouse has eight buttons allowing movement of 
the cursor in eight directions and buttons for right click, left 
click, drag, and scroll. The patient can control the interface 
functions by using one finger. For the tests, we connected 
photocoupler circuits in parallel to the contacts of the original 
input device to enable operation of the mouse via digital PC 
signals. This way, the Rakurakumouse was made to respond to 
the tongue motions. For testing different control strategies 
during experiments, some of the relations between the control 
signals and the cursor movement parameters can be changed 
easily by simple changes in the computer program. For 
example, in some tests the mouse pointer could be set to move 
in inverse direction of the tongue tip movement. The mouse 
pointer speed can be changed easily to adapt the user’s fatigue 
state.  

The games used for tongue motor training can vary 
depending on one’s preference and state of mind. Any game 
which can be played by mouse might be adapted easily to be 
used for tongue training. Internet gives a choice of suitable 
games that can be used. The games can be changed easily to 
keep the patient’s interest in the game and motivation to the 
rehabilitation process. 

III. EXPERIMENTS OF TONGUE-TRAINING MOTION 
CLASSIFICATION 

A.  Experimental conditions 
Five healthy male adults with normal tongue function (age 

23 ± 2.3 years old, height 170.1 ± 6.6 cm, body weight 60.2 ± 
10.3 kg, mean ± SD) participated in the tests. In the 
experiments, participants were asked to perform with open 
mouth a set of four training motions that included moving the 
tongue to the right and left, up and down, as well as a saliva 
swallowing motion that was performed with closed mouth 
(Fig. 2). Before each session, the end positions of the tongue 
for each participant in each motion direction were checked and 
marked. During the completion of the tongue-training motions 
it was monitored visually if the end tongue positions are 
reached. Times for tongue motions were set to about 2 s. A 
resting time of 2 s was provided between the series. The 
number of times of measurement was 5 motions × 14 sets. The 
EMG signals was amplified 2,052 times using an 
electromyograph (Pattern Art Laboratory Co., Ltd.) with a 14 
Hz high-pass filter and a 440 Hz low-pass filter and measured 
at sampling frequency of 2,000 Hz using a multi-function Data 
AcQuisition unit (USB-6218; National Instruments Corp.). 

B.  Method of learning and assessment 
The EMG signal of each channel is built from to the 

potential difference between the electrode attached to the right 
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earlobe and the electrode at the underside of the jaw, while the 
left earlobe is regarded as the reference potential. We 
conducted preliminary tests for tongue motion classification in 
the oral cavity by calculating the EMG signal from nine 
surface electrodes attached at the underside of the jaw at 
intervals of 20 mm using these combinations [6,7]. For the 
present experiments, we used a multi-channel electrode mount 
containing 22 electrodes. The distance between the electrodes 
was 12.5 mm. In this work we also explored the signal 
classification accuracy and feature extraction by comparing 
the classification results for the following two approaches:  

• Approach 1: The features are extracted from 22-channel 
EMG signals (Fig. 4(a)). 

• Approach 2: 22 electrodes are divided into two groups (right 
and left). All potential differences between electrodes are 
calculated for each group. Then the features are extracted 
from the EMG signals of 110 channels (11C2 × 2) (Fig. 4(b)). 

 
(a) 22-channel EMG (Approach 1)      (b) 110-channel EMG (Approach 2) 

Figure 4.  EMG signal used for feature extraction. 

 

The first 4 sets measurement data were used for learning of 
the neural network. The remaining 10 sets were used for 
assessment of the identification accuracy. The neural network 
was constructed by using Matlab (Neural Network Toolbox; 
The MathWorks, Inc.). The number of units of the 
intermediate layer is 50. The learning termination conditions 
are set to achieve a square error of less than 0.05. 
Back-propagation was used for learning of the neural 
networks. 

The classification accuracy was assessed by using the 
following equation: 

number of correct feature vectorClassification rate = 100
total number of feature vector

×

  (4) 

C.  Results 
An example of the classification results of the 

tongue-training motions can be seen in Figure 5. These 
motions contain common phases such as opening the mouth 
and thrusting the tongue and retrieving the tongue back into 
the mouth. Therefore, in the common phase, tongue-training 
motion was sometimes classified incorrectly. 

The results from the calculation of the classification rate 
under approach 1 and 2 are presented in Tables 1 and 2. For 
approach 1, where the features are extracted from 22-channel 
EMG signal, the classification rate for five motions exceeded 
90% for all participants and the average rate was 93.5%. For 
approach 2, where the features were extracted from a 
110-channel EMG signal, only one subject achieved 
classification rate above 90% for all five motions and the  

 
Figure 5.  Example of results of tongue-training motion classification. 

 
Table 1 Classification rate for 22-channel EMG signal (Approach 1) 

Subject Right Left Up Down Swallo
wing Total 

A 92.5 92.9 99.5 96.2 100.0 96.2 
B 87.5 87.1 94.9 80.8 100.0 90.1 
C 91.1 88.2 92.7 91.4 88.2 90.3 
D 96.7 95.4 93.4 85.9 97.4 93.7 
E 99.1 94.9 98.2 93.5 99.0 96.9 

Mean 93.4 91.7 95.7 89.5 96.9 93.5 

 

Table 2 Identification rate for 110-channel EMG signal (Approach 2) 

Subject Right Left Up Down Swallo
wing Total 

A 92.3 96.1 82.7 94.4 100.0 93.1 
B 73.1 92.2 76.0 91.1 90.7 84.6 
C 87.8 68.3 84.6 77.0 91.2 81.8 
D 91.9 84.7 92.7 77.4 98.6 89.0 
E 96.3 88.6 87.8 92.8 82.3 89.5 

Mean 88.3 86.0 84.8 86.5 92.5 87.6 
 

average result of all subjects was 87.6%. Approach 2, where 
the potential differences between the electrodes are combined, 
allows obtaining much information with a smaller number of 
electrodes placed at the underside of the jaw. A shortcoming 
of the same method is that unwanted signal components are 
generated when many electrodes are used. Approach 2 also 
requires an increased amount of calculations. As a difference, 
approach 1 requires fewer calculations and yielded a higher 
classification rate in this experiment. Future studies will be 
conducted for optimising the configuration of electrodes and 
their number. 

IV. GAME OPERATION EXPERIMENTS USING 
TONGUE-TRAINING MOTIONS 

Experimental results presented in the previous section 
showed that all five motions (tongue movement in four 
positions and swallowing motion) could be classified from the 
EMG signals of the suprahyoid muscles with accuracy of 
93.5%. In the following paragraph we discuss the game 
experiments for tongue-training motions.  
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Figure 6.  Aspect of game operation by a tongue-training motion. 

 

The directions of the tongue-training motions were aligned 
to the movements of the mouse pointer. This way, the 
movement of the tongue to the right or left and up and down 
resulted in cursor movement is the same directions. In order to 
avoid eventual false results due to unconscious swallowing 
motions that occur every 1–3 min the computer program was 
designed to block all mouse signals at the moment of 
swallowing and this way, to eliminate eventual false cursor 
movements due to swallowing. Digital signals for the input 
support device for people with disabilities were generated by a 
multi-function Data AcQuisition unit. 

The EMG signals in response to these tongue motions 
were used to train the neural network. Next, we used a simple 
game as shown in Figure 6, to ascertain whether the subjects 
were able to control the cursor from the start to the goal by 
tongue training motions. A notebook PC was placed in front of 
the subject to display the trajectories of the mouse pointer and 
EMG signals. On a separate window on the same screen we 
presented an image from a Web camera directed toward the 
user’s face to provide feedback to the user on the performed 
tongue movements (mirror mode). Instruction to the user for 
the times for saliva swallowing was given in an area shown in 
orange. 

Screenshots from the mouse operation experiments are 
presented in Figure 6. A red circle shows the position of the 
mouse pointer. The black line shows the trajectory of the 
mouse pointer. The experiments demonstrated that users were 
able to navigate accurately the cursor from the start to the goal 
without protruding from the frame. In the areas colored in 
orange, the mouse pointer did not move in an unintended 
direction during saliva swallowing. 

The initial results show that tongue training by playing 
games is accepted well by users. The approach offers great 
flexibility because dysphagia patients can find various games 
on the Internet that suit their tastes or mood to perform tongue 
motor training. The unique features of this method are that 
patients maintain their motivation for training. 

V. CONCLUSIONS 
In this study, we developed a novel training support 

system for improving the tongue’s range of motion and muscle 
strength after dysphagia. Tongue training motions were 
classified from the surface EMG signals of the suprahyoid 
muscles. Results reveal that all four tongue-training motions 
and the swallowing motion were classified with 93.5% 
accuracy. The approach was tested with a simple PC game. 
Results demonstrated that simple PC games could be played 
by tongue-training motions, achieving in this way efficient, 
enjoyable and pleasant tongue training. Using the proposed 
method, dysphagia patients can choose games that suit their 
preferences and/or state of mind. It is expected that the 
proposed system will be an efficient tool for long-term tongue 
motor training and maintaining patients’ motivation. Training 
efficiency of the proposed system will be evaluated by further 
analysis of the evaluation indexes such as tongue pressure test, 
repetition saliva swallowing test, and the oral diadochokinesis 
test. 
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