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Abstract— Activity of Daily Living has become a clinical
de facto instrument to assess daily functional status of older
people living independently at home. Almost all ADLs scales
are based on subjective assessment of clinical staff and self-
reported responses of the elderly person. A great deal of
variability in ADL assessment is likely due to the different
cultural beliefs, language and education, and over-assessment of
personal capability to potentially avoid negative consequences.
This paper proposes automatic and objective ADLs assessment
as key component of a technology platform that supports older
people to live independently in their home, called Smarter Safer
Homes. The objective ADL assessment is achieved through
communicating data from simple non-intrusive, wireless sensors
placed in a home environment. Pilot sensor data sets were
collected over six months from nine independent living homes
of participants aged 70+ year. The application of a cluster-
ing based, unsupervised learning method on these data sets
demonstrates the potential to automatically detect five domains
of activity contributing to functional independence. Further-
more, the method provides features that support elderlys self-
monitoring of daily activities more regularly, that could provide
the potential for timely and early intervention from family and
carers.

I. INTRODUCTION

Over past forty years, more than 43 indexes have been

published to determine fundamental functional disability

status of both patients and population [1]. Measures of func-

tional ability outlined by the ADL have become routine in

assessment of functional status of older people, believed to be

a good predictor of a wide range of health-related behaviour

in seniors. Among them, the Katz ADL scale is arguably the

most appropriate instrument used in clinical framework to

assess and flag characteristics of functional independence for

elderly people in clinical and home environments [2]. Katz

ADL assessment requires evaluation of activities pertaining

to bathing, dressing, toileting, transferring, continence and

feeding. This instrument scores each activity with 1 if an

elderly person can achieve it independently, and 0 if it is

dependent on assistance. Hence, the Katz ADL index scores

will range from 0 to 6, indicating an elderly persons ability

to function as being dependent to independent, respectively.

There are also other ADL scales to measure more sophis-

ticated functional independence such as the full range of

activities necessary for independent living in the community

[3], stroke patients receiving in-patient rehabilitation [4]
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and patients with cognitive impairment such as Alzheimer’s

disease or dementia [5].

However, current approaches of ADL applications in

health providers are still based on the subjective assessment

from clinical staff and and self-reported responses of the

elderly person [6]. Although there is some consensus across

ADL evaluations, there still exists great deal of variation

in the assessment that is likely to be because respondents

interpret the questions differently [7]; individuals with var-

ious culture, language, and education backgrounds assess

degree of difficulty in performing each ADL differently [8];

and communication barriers from cognitive impairment may

also have significant implications on achieving reliable ADL

assessment. Furthermore, current assessments are clinically

resource intensive, particularly from a home setting, making

them impractical for long term care of the elderly or disabled

populations.

To address subjectivity and reduce human resource invest-

ment in assessments, wearable sensors have been designed

to understand human postures [9], RFID markers tracking

patients [10], wearable accelerometers detecting falls [11],

etc. Wearable sensors, however, are not always convenient for

users; particularly where long term monitoring is required.

Motivated by these limitations, we developed a Smarter

Safer Homes platform that enables an automated approach

of assessing fundamental ADLs of independent living of

older people through information gathered from wireless

sensors placed within their home environment. This platform

thus provides longitudinal objective information about the

residents day-to-day activity status, and therefore can assist

self-management of residents or timely care attended from

family member or carers. To achieve this, data gathered

from these sensors will be used collectively to determine the

residents actions through analysis of various context-related

actions through our platforms human behaviour detection

algorithms to automatically infer health related activities

pertaining to ADLs.

II. IN-HOME WIRELESS SENSOR NETWORK

To minimise intrusive monitoring, our sensors were placed

somewhat ‘invisible’ and non-intrusive to residents in their

home environment. These sensors communicate in-home

activity data with a local server through the ZigBee protocol

that enables low-power, secure and reliable data transmission.

Figure 1 illustrates an example of the data collected by the

wireless sensor network.

Motion sensors detect the presence of people in its

vicinity. They are installed in every room to monitor the
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Fig. 1. Examples of sensor data collected in-home

location and transition within the home. Accelerometer sen-

sors are attached to beds to monitor status transfers from

lying/standing and sleep quality through measurement of

subtle body movements in bed. Power sensors are plugged

into power outlets to measure electrical power consumption

of connected appliances. Acoustic sensors are attached to

downpipes under the kitchen basin to detect sound generated

by water flowing in pipes. A combined temperature/humidity

sensor installed in the bathroom and kitchen to detect the

changes in room air condition. Reed switches affixed to door

contact surfaces detect opening/closing of the entrance door,

wardrobes, cupboards, etc. And finally circuit meter sensors

installed in the meter box monitor energy usage from kitchen

stoves. Figure 2 shows which area of the home the sensors

are installed on a simplified floor map of a two-bedroom

unit.

Fig. 2. In-home sensor installation places

Most of the environmental sensors are powered by batter-

ies. This makes sensor installations flexible and easy because

it is untethered and can be positioned less intrusively and yet

close to the activity being gathered, independent of a power

source. It also benefits easy sensor maintenance. Furthermore

the sensor communication generally requires little bandwidth

and is relatively insensitive to latency, so that we can apply

energy efficient communication protocols and event-based

communication strategies, i.e. only uploading sensor data

whenever an event has been detected. In this way, the sensors

battery life is greatly extended lasting an average six to eight

months long.

III. AUTOMATICAL ACTIVITY RECOGNITION

Raw sensor data collected by our in-home wireless sensor

network is initially processed to extract meaningful actions,

simple human motion patterns such as entering/leaving a

room, opening/closing a fridge, usually in the order of

a couple of seconds [12]. This is a relatively easy task

since sensors deployed at different locations usually provides

obvious clues. From these actions, we want to extract basic

activities that are closely related to the residents wellbeing

and functional independence status as suggested in most

ADLs scales. In particular, we extracted activity status relat-

ing to mobility, bathing, dressing, postural transfer (lying to

standing), and preparing meals in our smart home platform,

from sensors that are listed in Table I.

TABLE I

ADLS RECOGNITION FROM RAW SENSOR DATA

Typical activities of ADLs Sensor types

Mobility Motion

Bathing Motion, Humidity, Temperature

Dressing Motion, Reed switch

Postural transferring Accelerometer, Motion

Preparing meals Motion, Power, Reed switch, Acoustic

A. Mobility

A core part of the ADL is mobility status, computed

with only one type of sensor, i.e motion sensor, deployed

in each room of the house. Figure 3 shows an example of

motion sensor firings from different rooms, represented in

different colours of spikes over one day. Together with the

topological indoor maps, we can infer the rate and changes

in the mobility status of residents.

B. Bathing, dressing, postural transferring

Although these activities involve more than one sensors,

there is usually a key sensor that plays a decisive role in

activity extractions. For example, bathing activity can be

best inferred through abrupt changes in state of humid-

ity/temperature sensor, as illustrated in Figure 4. Similarly,

dressing activity can be inferred through changes in state

of reed switches attached to the wardrobe. Postural transfer,

measuring number of changes between lying and standing

states, can be inferred through data value changes of ac-

celerometer sensors affixed to bed.

C. Preparing meals

Extracting meal activity is the most challenging of the

ADLs in our platform. Since preparing a meal involves

multiple actions, data from multiple sensors placed in the

kitchen need to be gathered collectively to infer a major

meal preparation as opposed to assuming each particular

kitchen sensor activity is a meal preparing activity. Figure

5 illustrates three days sensor firings for all preparing meals

related sensors in a home.

Therefore to accurately and efficiently extract this activity

we need advanced, well researched, data mining and statis-

tical analysis techniques, such as those described in [13]. In
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Fig. 3. An example of one day’s motion sensor firings in a home, (00:00:00 ∼ 23:59:59)

Fig. 4. An example of one day’s bathing related sensor firings in a home (00:00:00 ∼ 23:59:59), the box indicates an inferred bathing event.

Fig. 5. Three days preparing meals related sensor firings in a home, boxes indicate inferred meal preparations with high confidence.

brief, we can divide existing activity recognition algorithms

into three categories:

Supervised learning: requires labelled sensor data to train

a pattern recognition learning algorithm. A probabilistic and

reasoning model can be thus constructed by this algorithm

from the training data set to infer activities happened on

unknown new sensor data sets. Compared against typical

activities measured in general ADLs scales, these are usually

fine-grained activities such as making a phone call, brewing

a coffee, reading a book, etc. Examples of techniques used

in this category includes Dynamic and naı̈ve Bayes net-

works [14], Conditional Random Fields (CRFs) [15], Hidden

Markov Models (HMMs) [16], and support vector machines

(SVMs) [17]. In many scenarios, collecting labelled sensor

data can be time consuming, tedious, and almost prohibitive,

especially when deploying sensors in a large-scale trial

environment.

Unsupervised learning: constructs activity recognition mod-

els directly from unlabelled sensor data. This approach

either estimates probability of activities through clustering

techniques such as Hierarchical methods [18] allowing multi-

resolution activity modelling on possible related actions, or

adaptive methods [19] where a stochastic model can update

the likelihoods of activities according to new observations of

action clusters. There are other algorithms for unsupervised

learning which include the use of graphical models [20] and

multiple eigenspaces [21].

Logical modelling and reasoning exploits logical and do-

main knowledge representation for activity and sensor data

modelling, and to use logical reasoning to perform activity

recognition [13]. We omit further detailed discussions as it

is beyond the scope of this paper.

Due to the age of our residents and their difficult in

self-reporting, unsupervised learning techniques are the most

practical and suitable for our trial. We therefore used clus-

tering techniques to extract the meal preparing activity from

related sensor data. Note that instead of using an approx-

imate clustering methods such as K-means, we developed

a dynamic programming based optimal clustering algorithm

using the time ordering property of the sensor data. Specifi-

cally, let Xi represent the array of firing records of sensor i

per minute of a day, with |Xi| = 1440. Let ai represent the

probability of sensor i involved in meal preparation, which

can be determined through data gathered from scheduled

interviews of the routine meal preparation activity with

participants. Then the total sensor firing record array X

can be represented as X =
∑

n

i=1
ai ∗ Xi. Our developed

clustering algorithm thus computes X to find k clusters that

minimise the summation of root mean squares of all clusters.

These k clusters are output as possible time intervals of meal

preparation during the day with confidence rates represented

as probabilities. Figure 6 shows an example of the preparing

meals activity extracted by our method from the sensor data

listed in Figure 5. To test the accuracy of our clustering based
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Fig. 6. Three days preparing meals related sensor firings in a home

method, we compared sensor data sets collected from nine

independent living homes with ground truth about routine

meal preparations obtained residents through home inter-

views. Then we extracted meal preparation information from

these nine homes over six month sensor data to be compared

against two weeks of ground truth information provided by

the residents. Our comparison resulted in precision rate of

82% and 78% recall rates shows great potential for the

application of this clustering based unsupervised learning

model.

IV. DISCUSSION AND FUTURE WORKS

Automatic determination of ADLs enables objective as-

sessment of functional independence, particularly in a home

environment for the elderly people living independently.

These daily activities are presented in an intuitive way in

our Smarter Safer Homes platform, as illustrated in Figure

8. Supposing Monday’s ADL is representative of expected

Fig. 7. Five domains of automatically extracted ADLs

healthy functional status of the senior person, the ADL

shown on Wednesday may warrant investigation of their

decline in functional status, should it recur more regularly.

Our Smarter Safer Homes platform can support older people

living alone in self-management of their functional indepen-

dence; and simultaneously provide the capacity for family

members to provide better support to their elderly parents

living alone remotely. Furthermore, an automated ADL as-

sessment feature could also provide health care providers, the

capacity to monitor older peoples’ health care status more

regularly, and provide a more timely and early intervention

through telehealth.

REFERENCES

[1] A. R. Feinstein, B. R. Josephy, and C. K. Wells, “Scientific and clinical
problems in indexes of functional disability,” Ann Intern Med, vol. 105,
pp. 413–20, Sep 1986.

[2] S. Katz, “Assessing self-maintenance: activities of daily living, mo-
bility, and instrumental activities of daily living,” J Am Geriatr Soc,
vol. 31, pp. 721–7, Dec 1983.

[3] M. P. Lawton and E. M. Brody, “Assessment of older people: self-
maintaining and instrumental activities of daily living,” Gerontologist,
vol. 9, no. 3, pp. 179–86, 1969.

[4] G. Sulter, C. Steen, and J. De Keyser, “Use of the barthel index and
modified rankin scale in acute stroke trials,” Stroke, vol. 30, pp. 1538–
41, Aug 1999.

[5] R. S. Bucks, D. L. Ashworth, G. K. Wilcock, and K. Siegfried,
“Assessment of activities of daily living in dementia: development
of the bristol activities of daily living scale,” Age Ageing, vol. 25,
pp. 113–20, Mar 1996.

[6] M. Wallace and M. Shelkey, “Monitoring functional status in hospi-
talized older adults,” Am J Nurs, vol. 108, pp. 64–71; quiz 71–2, Apr
2008.

[7] J. M. Guralnik, L. G. Branch, S. R. Cummings, and J. D. Curb, “Phys-
ical performance measures in aging research,” J Gerontol, vol. 44,
pp. M141–6, Sep 1989.

[8] M. W. Linn, K. I. Hunter, and B. S. Linn, “Self-assessed health,
impairment and disability in Anglo, Black and Cuban elderly,” Med

Care, vol. 18, pp. 282–8, Mar 1980.
[9] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and

I. Korhonen, “Activity classification using realistic data from wearable
sensors,” Information Technology in Biomedicine, IEEE Transactions

on, vol. 10, pp. 119–128, Jan 2006.
[10] R. Sangwan, R. Qiu, and D. Jessen, “Using rfid tags for tracking

patients, charts and medical equipment within an integrated health
delivery network,” in Networking, Sensing and Control, 2005. Pro-

ceedings. 2005 IEEE, pp. 1070–1074, March 2005.
[11] J. Canas, S. Marugán, M. Marron, and J. Garcia, “Visual fall detection

for intelligent spaces,” in Intelligent Signal Processing, 2009. WISP

2009. IEEE International Symposium on, pp. 157–162, Aug 2009.
[12] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine

recognition of human activities: A survey,” Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 18, pp. 1473–1488, Nov
2008.

[13] L. Chen, C. D. Nugent, J. Biswas, and J. Hoey, Activity Recognition in

Pervasive Intelligent Environments. Atlantis Publishing Corporation,
1st ed., 2011.

[14] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox,
H. Kautz, and D. Hahnel, “Inferring activities from interactions with
objects,” Pervasive Computing, IEEE, vol. 3, pp. 50–57, Oct 2004.

[15] E. Nazerfard, B. Das, L. B. Holder, and D. J. Cook, “Conditional
random fields for activity recognition in smart environments,” in IHI
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