
Machine Learning for Detecting Brute Force Attacks
at the Network Level 

Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Clifford Kemp, Naeem Seliya, and Richard Zuech 
{mmousaarabna2013@fau.edu; khoshgof@fau.edu; cliffkempfl@gmail.com; nseliya@gmail.com; rzuech@fau.edu} 

Florida Atlantic University, Boca Raton, Florida, USA

Abstract — The tremendous growth in computer network 
and Internet usage, combined with the growing number of 
attacks makes network security a topic of serious concern. One of
the most prevalent network attacks that can threaten computers 
connected to the network is brute force attack. In this work we 
investigate the use of machine learners for detecting brute force 
attacks (on the SSH protocol) at the network level. We base our 
approach on applying machine learning algorithms on a newly 
generated dataset based upon network flow data collected at the 
network level. Applying detection at the network level makes the 
detection approach more scalable. It also provides protection for 
the hosts who do not have their own protection. The new dataset 
consists of real-world network data collected from a production 
network. We use four different classifiers to build brute force 
attack detection models. The use of different classifiers facilitates 
a relatively comprehensive study on the effectiveness of machine 
learners in the detection of brute force attack on the SSH 
protocol at the network level.  Empirical results show that the 
machine learners were quite successful in detecting the brute 
force attacks with a high detection rate and low false alarms. We 
also investigate the effectiveness of using ports as features during 
the learning process. We provide a detailed analysis of how the 
models built can change as a result of including or excluding port 
features.

Keywords — Brute force attack, network flow, network-level 
attack detection, machine learning. 

I. INTRODUCTION

Any host connected to the public Internet or even a private 
computer network is under a constant threat of Internet or 
insider attacks. In today’s computing environments, network 
attacks have become a critical problem for the security of 
computer networks. With an increase in dependence on the 
Internet and computer networks (e.g., cloud computing, social 
networking, online forms, etc.), malicious behaviors have 
become commonplace. Attacks and malicious activities over a 
network must be detected to ensure the intended functioning 
of the system and assure secure transfer of user data. 

Network attacks can be detected, or even prevented, by 
monitoring and analyzing relevant data at the network level or 
at the host level; however, high speed networks and the 
utilization of encrypted traffic data make such detections 
challenging. Host-based detection uses internal software 
installed on the host to monitor arriving traffic received by 
that host. This attack detection software used by the host also 

has access to the internal logs, such as users’ login activities, 
running processes and applications, and other relevant data –
which it can utilize for attack detection. A key downside of 
host-based detection is the inability to detect distributed 
attacks that have become prevalent in today’s Internet and 
ubiquitous computing environments. Detection of such attacks 
requires a broader view and inspection of the network data. 
Network-based detection provides such a perspective. 

In network-based detection, all of the data traversing the 
network can be monitored and analyzed. In order to 
accomplish this, the detection element must be positioned at 
the network transit points. In comparison to host-based 
detection software, which is deployed only on a particular 
host, a network-based detection scheme is more scalable. It is 
not dependent on the host’s operating system (OS). In addition 
to providing protection for hosts that do not have their own
protection mechanism, network-based detection is the only 
possibility in situations where there is no direct access to 
particular hosts.  

In network-based detection, since all of the data passing 
through the network needs to be monitored for malicious 
activity, the detection scheme/model needs to be fast and 
efficient. One solution is the application of flow-based 
analysis. In recent years, network security research has started 
to focus more on flow data to detect attacks. Flow analysis 
involves monitoring and analysis of network flows instead of 
packets. Network flow is an aggregation of packets that share 
some identical network features/behaviors during a specific 
time interval, i.e. window. The five most common features 
that are used in the definition of a network flow is a 5-tuple 
key consisting of source IP, destination IP, source port, 
destination port, and network protocol. Since network flow is 
an aggregation of network packets, analyzing network traffic 
at the flow-level speeds up the detection processing time as 
compared to analyzing each individual packet because the 
amount of data to be processed is reduced. Since flow data is 
based only on packet headers and not packet payload 
information, it is a better option for the detection of attacks 
that contain encrypted payload within the traffic.

Brute force attacks are one of the most prevalent types of 
attacks in computer networks [1], [2]. In a brute force attack 
on the SSH protocol the attacker tries to log in to a user’s 

2014 IEEE 14th International Conference on Bioinformatics and Bioengineering

978-1-4799-7502-0/14 $31.00 © 2014 IEEE

DOI 10.1109/BIBE.2014.73

379



account, and continues trying different passwords on the 
victim’s machine to reveal the login password. Typically, 
attackers use automated software that generates different 
combinations of passwords to attempt against the victim’s 
machine. Unfortunately, human-chosen passwords are 
inherently weak because they are selected from a limited 
domain of the user’s knowledge. Moreover, the need for 
memory retention/recall of the passwords aids to the weakness 
of passwords. For example, a recent article by CBS News 
presents the top 25 common passwords of 2013, revealing the 
use of very weak passwords such as “123456”, “qwerty”, 
“abc123”, “sunshine”, etc. This makes it easier for an attacker 
to find the correct password by trying different possible 
password permutations. Another key reasons brute force 
attacks are popular are the continued use of default auto-
generated passwords and using the username as the password. 
While mandated change of default passwords is increasing, 
some old servers that do not facilitate this provide 
opportunities for a brute force attack on the SSH protocol.  

The research on the detection of brute force attacks has 
generally focused on detection at the host level. At the host 
level detection, access logs are inspected and if the number of 
failed login attempts in a specific time exceeds a predefined 
threshold number an alert is fired. In this work we study the 
detection of brute force attack at the network level. It scales 
better in comparison to a host-based detection scheme. 
Additionally, network-based detection also is critical in 
detecting network-based attacks and provides some protection 
for devices that do not have internal (host level) protection. 
We investigate using machine learners for automated detection 
of brute force attacks (on the SSH protocol) at the network 
level based on flow data. 

Our case study data is collected from a real-world network 
data from a production computer network. We extract network 
flows from the full packet captures using a tool named SiLK 
[3]. The data is then labeled by professional network experts 
to detect brute force attacks. Finally, each flow is labeled as 
being a brute force attack or not a brute force attack to 
generate a labeled network flow dataset. We prefer not to use 
the usual “attack” and “normal” label notations largely 
because the traffic data labeled as “normal” might include 
attacks other than brute force attack – the focus of our study.
Our intention in this work is the detection of brute force 
attacks that’s why we found labeling as “brute force”, “not 
brute force” more appropriate in this case. 

We investigate four different machine learners (classifiers) 
for detecting brute force attacks. They include K-Nearest-
Neighbor with K = 5 (5-NN), Naïve Bayes (NB), and two 
versions of the C4.5 Decision Tree (C4.5D and C4.5N). 
Details of these learners are provided in Section III. Using 
four different learners presents a broader analysis on the 
ability of machine learning to detect brute force attacks at the 
network level. To provide evaluation results on the models’
performance, 5-fold cross-validation is used. Our results 
demonstrate that using machine learning methods is a very 
effective approach for the detection of SSH brute force attacks 

at the network level. We also investigate the effect of using 
port information for the detection of brute force attacks. This 
is conducted by repeating the above modeling and evaluation 
for brute force attack detection, but without using ports data as 
features in building the detection models.   

The remainder of this paper is organized as follows. 
Section II provides related works on the topic of brute force 
attack and different detection approaches. Section III presents 
our case study data, the classifiers utilized, and the main 
empirical designs. In Section IV, we discuss our results. 
Finally in Section V, we conclude our work and provides 
suggestions for the future work.

II. RELATED WORK

The SANS institute called the brute force attack “the most 
common form of attack to compromise servers facing the 
Internet” in its 2007 Top-20 Security Risks report. The 
prevalence of brute force attack has been investigated in 
different studies. Bezut et al. [4] studied four months of SSH 
brute force attack data collected from honeypot machines. The 
authors concluded that every individual SSH port on the 
Internet is very likely to experience brute force attacks. Owens 
et al. [5] study brute force attacks observed on three different 
networks – a residential system with a DSL Internet 
connection, a university campus network, and an Internet-
connected small business. Their studies show that brute force 
attacks applied on these different networks are very similar. 
Moreover, their observations suggest that many brute force 
attacks are based on precompiled lists of user name and 
passwords which are widely shared. In addition to the two 
works discussed above, there are other studies that also 
suggest that brute force attacks are one of the most prevalent 
attacks on the Internet [1], [6], [7]. 

Host-based detection techniques for brute force attacks are 
based on counting the number of failed login attempts from a 
specific host during a specific time interval. If this number 
exceeds a predefined number of attempts threshold the host is 
blocked. The approach stems from the fact that automated 
software used in a brute force attack will try testing more 
wrong passwords than a legitimate user who has forgotten 
their password during the specified time interval. DenyHosts 
[8], BlockHosts [9], and BruteForce-Blocker [10] are some of 
the common host-based detection techniques.

Kumagai et al. [11] calculated the sample variance of the 
total PTR resource record based DNS query packet traffic of 
campus networks servers which were under brute force attack.
Their observations show there is a change in this statistical 
value when the SSH brute force attack occurs. However, they 
did not provide any threshold limit for the change detection. In 
addition, the authors did not provide accuracy evaluation for 
their detection method. Mobin et al. [12] also use statistical 
analysis for the detection of brute force attacks. They calculate 
a parameter that summarizes aggregate activity. Significant 
change in this parameter can demonstrate a distributed brute 
force attack. 

380



Malecot et al. [13] use information visualization for the 
detection of distributed brute force attack. For each local host,
the hosts attempting to connect to the local host are shown in a 
mapping structure, denoted as a quad tree. The idea is that 
coordinated attackers appear in quad trees of multiple hosts 
and it makes their detection possible. However, this approach 
needs a network expert’s analysis and is not able to detect the 
attacking hosts automatically. Their study focuses on recurring 
brute force attacks, and concludes that whenever there is a 
SSH port open on the Internet, there is a very good possibility 
that the attackers will perform brute force attack on it. In 
addition, their study shows that the attackers most likely target 
professional servers rather than workstations.

III. EXPERIMENTAL DESIGN

In this section, we explain the main steps we took in our 
empirical studies. First, a new dataset is built from network 
traffic data collected from a real-world production computer 
network. Second, the network flow data is extracted from the 
packet data captured from the network using the SiLK traffic 
analysis tool [3]. Brute force attack flows (and consequently 
labeling not brute force attack instances) are then labeled in 
the data by network experts. The four classifiers, as briefly 
stated earlier, are used to build classification models on the
labeled flow data. Towards studying the effect of using ports 
data on detecting brute force attacks, we conduct two sets of 
experiments: (1) a feature set containing source and 
destination ports data, and (2) a feature set without ports data. 
The remainder of the section presents the above steps in 
further detail. 

A. Data collection and labeling 
We collected full packet data from a live production 

network over a 24 hour period. A production network is a live 
computer network connected to the Internet that reflects 
volume and diversity of real world network traffic. Our case 
study involves a campus network with approximately 300 
users, four different subnets and multiple servers such as:
domain controller, Web, FTP, Email, and DNS servers. The 
data collection server collects all the traffic entering and 
exiting the network via three collector sensors located at 
different parts of the network. Snort [14] log files are used to 
extract full packet data in the collection server. Subsequently, 
we then extract network flow data from the full packet 
captures using SiLK.

Network flow describes network sessions in terms of an 
aggregation of packets that share some certain properties 
during a specific time interval. These properties are some key 
packet features, which most commonly are source IP address, 
destination IP address, protocol type, and source and 
destination ports (for UDP and TCP packets). We note that our 
definition of network flow is based on the IPFIX standard. 
Once a flow record has been initiated there are only two ways 
it can be terminated. The IPFIX standard states that when no 
data for a flow has been received within 30 seconds of the last 
packet, the flow record is terminated, and when a flow has 
been open for 30 minutes, the flow record is terminated and a 
new flow record is initiated. 

We consider 8 different features for each flow. Features 
and their descriptions are shown in Table I. We do not use IP 
addresses as predictive features to avoid making out analysis 
special/customized to just the particular network of our case 
study. During our analysis we realized that there were some 
source IPs that are just producing attack data. Eliminating the 
source IPs prevents the classifiers from simply considering 
attacker source IPs for the detection of attacks. Since we want 
to investigate the effect of having ports in the feature set we 
conduct two kinds of experiments. In one experiment we use 
ports within the features set, while in the other experiment we 
do not use ports as features in the process of building models.  

After producing the flow data, manual analysis is 
conducted by network experts in order to detect and label the 
brute force attacks in the data. Such analysis is done based on 
Snort alerts as well as analysis of top talkers. Top talkers 
consist of IPs with the most number of connections, amount of 
time spent per connection, total aggregated connection, 
number of aggregated packet and most amounts of bytes 
coming in and leaving the network. They originate from tools 
found in SiLK such as rwstats, rwcut and rwfilter. Correlating 
the statistical results achieved by analyzing top talkers and 
Snort alerts along with applying visual analysis helps the 
network experts to detect the SSH brute force attacks. After 
the labeling is done, each single network flow in the data is 
labeled as being a brute force attack or not a brute force attack. 
The final labeled data is thus ready for training the machine 
learners. 

B. Applying machine learning methods 
We chose four classification learners for our analysis: 5-

Nearest Neighbor (5-NN), two forms of C4.5 Decision Trees 
(C4.5D and C4.5N), and Naive Bayes (NB). These learners 
were all chosen due to their relative ease of computation and 
their dissimilarity from one another. Different learners are 
used in our study since a broader analysis on the ability of 
machine learning algorithms in detecting brute force attacks 
can be investigated. We build all models using the WEKA 
machine learning toolkit [15], and using its default 
parameters’ settings. For all classification models, “brute 
force” class was considered as the positive class and “not 
brute force” class was considered as the negative class. A brief 
description of each learner including their relevant parameter 
settings is presented below; however, for additional details the 
reader is referred to [15]. 

K-nearest-neighbors or K-NN is an instance learning and 
lazy learning algorithm. It only uses the training data to build 
the learnt hypothesis. The predicted class for every test 
instance is derived from the classes of the K closest samples to 
that instance (in our study, K=5). Since for each test sample 
K-NN needs to calculate its distance to all the training samples 
to specify the K nearest samples to the given sample, K-NN 
has a �(��) complexity that makes it a computationally 
expensive algorithm.  

C4.5 decision tree (implementation of the j48 decision tree 
in WEKA) is a tree-based algorithm in which a decision tree 

381



structure is determined. Each branch divides the samples into 
2 or more other branches based on the values of one of the 
features in the data sample. The C4.5 algorithm uses a 
normalized version of Information Gain to decide the 
hierarchy of useful features in building tree branches. The 
more information gain the feature has the higher it appears in 
the tree structure. In this study, we employed a version of C4.5 
using the default parameter values from WEKA (denoted 
C4.5D) as well as a version (denoted C4.5N) with Laplace 
smoothing activated and tree-pruning deactivated.  

The Naïve Bayes algorithm uses Bayes’ theorem to 
calculate the posteriori probability of an instance being a 
member of a specific class. Unfortunately, it is very difficult 
to calculate the posteriori probability directly. Therefore, 
certain assumptions are made along using Bayes’ theorem to 
calculate posteriori probabilities. While, these assumptions 
make Naïve Bayes a relatively weak learner, it is a fast 
classifier.

The four classification models are trained and evaluated 
using cross-validation (CV) based on the labeled dataset 
generated with the network flow data for our case study. A 5-
fold cross-validation is used in our experiments. Moreover, to 
mitigate any bias due to a random lucky/unlucky split to create 
the folds, the cross-validation based model training and 
evaluation is repeated 4 times, and the average performance of 
the machine leaners across the 4 runs is then evaluated. The 
classification performance metric used in our study is the 
effective and commonly used Area Under the Receiver 
Operating Characteristic Curve (AUC). The AUC builds a 
graph of the   

Table I: Features used for flow analysis 

Feature Description
Source Port Source port seen in the flow

Destination Port Destination port seen in the flow
Number of Packets Total number of packets seen in the flow
Number of Bytes Total number of bytes seen in the flow

Duration Flow duration time
Flow Flags Cumulative OR of all the TCP flags seen in 

the flow
Initial Flags The flags of the first packet seen in the flow

Session Flags Cumulative OR of all the TCP flags seen in 
the flow except the TCP flags of the first 

packet

True Positive Rate (TPR) vs. the False Positive Rate (FPR) as 
the classifier decision threshold is varied, and then uses the 
area under this graph as the performance across all decision 
thresholds. AUC demonstrates the trade-off between TPR and 
FPR, where higher AUC values indicate a high TPR and low 
FPR which is preferable in the current application, i.e. 
network attack detection. 

We performed two kinds of analysis based on 
including/excluding ports in our feature set. Popular victim 
services of SSH brute force attacks usually use a well-known 
Internet port such as TCP/22, although System Administrators 

can and sometimes do change the destination port for the SSH 
service to something different than the standard default port. 
Also, attacks usually use source ports greater than 1024. As 
ports can provide some information which directs us to 
detection of an attack we decided to apply the experiments 
with and without using ports data as features in our network 
flow samples, and observe how providing port information can 
modify the results. Our results suggest that including ports in
the feature set can improve the classification performance and 
it makes changes in the built model based on the type of the 
classifier used. However, one significant benefit of not using 
ports in the dataset is that since destination ports for the SSH 
service can arbitrarily be changed by Systems Administrators 
to other values, not including ports in the dataset produces a 
more robust model which can accommodate the scenario of 
when the SSH service is not running under the standard 
default port. 

IV. RESULTS

For each classifier, 4 runs of 5-fold cross-validation is 
applied. This produces 20 AUC values for each classifier. The 
results shown in Table II are some statistics calculated over 
the AUC values of each classifier. The results present AUC 
values for both cases of using and not using ports in the 
feature set. As the standard deviation (std) of AUC values are 
low we can use the mean of AUC values to compare the 
performance of different classifiers. We observe that, overall, 
the classifiers are performing well in the detection of brute 
force attacks as shown by AUC values greater than 0.97. The 
5-NN learner has the highest classification performance with 
an AUC value of 0.9998 when using ports in its feature set and 
an AUC value of 0.9902 while not using ports in its feature set 
– the two models for 5-NN are relatively similar. The 
classifier performances shown in Table II suggest that using 
machine learning algorithms for the detection of SSH brute 
force attacks produces very good results with a high detection 
rate and low false alarm rate. 

Comparing the classification results from two kinds of 
experiments with or without the inclusion of ports in the 
feature set, shows that when we use ports as features the 
classification performance of 5-NN and C4.5N doesn’t really 
improve significantly. In contrast, the performance of C4.5D 
does improve slightly and the classification performance of 
Naïve Bayes increases from 0.9707 to 0.9975. The Naïve 
Bayes algorithm is traditionally a weak algorithm, and in our 
study for the case of not using ports in the feature set, the 
other classifiers outperform it. However, by adding ports to its 
feature set Naïve Bayes yields similar performance results 
compared to 5-NN and C4.5D.  

The constructed tree structures of the C4.5D and C4.5N 
are the same at the respective first levels, but then C4.5N adds 
more levels to its tree structure. The likely reason is that no 
pruning is performed in C4.5N. Figure 1 shows a segment of
the common structure in the C4.5N and C4.5D trees (a sample 
case is presented) while not using ports in the feature set. Due 
to space limitation the whole tree is not shown. Considering 

382



the common part of the tree structures in C4.5D and C4.5N we 
observe that when we don’t use ports in the feature set 
“number of bytes”, “flow flags” and “number of packets” 
features appear in the first, second and third levels of the trees 
respectively. “Duration” then sometimes appears on the fourth 
level.  

The main characteristic of a brute force attack is a 
relatively high number of failed login attempts in a specific 
time interval. Here the maximum time interval we consider is 
30 minutes with respect to the definition of our extracted 
network flows that we provide in Section III.A. Hence, it is 
reasonable to see a specific high number of packets in a brute 
force flow. However, as failed login attempts do not include 
big packets the number of bytes in the respective flow is not 
high. On the other hand, failed login attempts in a SSH brute 
force flow record will still contain all TCP flags seen in a 
complete TCP communication since failed logins still build a 
complete TCP connection. Our experiment included the FIN, 
SYN, PSH, and ACK TCP flags as part of these SSH brute 
force flow records, however in general the TCP SYN and TCP 
ACK flags will always be present at a minimum in order to 
indicate a successful TCP connection. The decision tree 
classifier reflects these characteristics in the resulting tree 
structure. At the first level the number of bytes in the flow is 
examined, and if the number of bytes is less than a specific 
amount then flow flags are checked in the next step to see 
whether all the TCP flags necessary for a completed TCP 
connection are seen in the flow. In the third level, the number 
of packets is checked that should be relatively high. Duration 
of the flow is then used in the fourth level to make the 
classification more accurate based on the time duration 
attackers tend to choose for applying the attack.

When including ports in the feature set, the features 
“initial flags”, “number of packets” and “destination port” 
construct the first, second and third levels of the tree structure 
respectively. Most of the time destination port leads to a 
labeled leaf and there are no more branches after that.
Sometimes source port comes after the destination port as the 
fourth level to refine the classification.  

Upon comparing the tree structure when not using ports 
in the feature set with the tree structure when using ports in 
the feature set, we observed the following: (1) In the latter, the 
feature “number of bytes” is not used, and (2) The feature 
“number of packets” and a flag related feature appeared at the
high levels of the tree structures. In this case however, “initial 
flags” which represents the flags of the first packet is used in 
contrast to “flow flags” which represents all the flags seen in 
the whole flow. Based on these two observations, using ports 
in the feature set has resulted in: the tree eliminating a
characterizing feature such as “number of bytes”, using only 
the “initial flags” feature instead of the “flow flags” feature, 
and adding destination port to the third level. Sometimes 
source port is used at the fourth level after the destination port 
to assist with classification. Avoiding some discriminating 
features and using ports features instead, along with increasing 
the classification performance, suggests that port features can 

be helpful in the detection of brute force attacks using C4.5D.
However, we note that using ports make the tree structure 
larger due to the fact that ports are actually categorical 
features with a lot of different values in which there is one 
branch for each port value. Moreover, larger trees are more 
likely to have the over-fitting problem in machine learning. 

Even though using ports is helpful in C4.5D it doesn’t 
really make significant performance change in C4.5N. The 
likely reason is that in C4.5N the tree structure is completed 
and includes finer branches (lower-level) than in C4.5D. In 
fact, no pruning is done in C4.5N. In both cases of using/not-
using ports in the features set, C4.5N yields a complete tree. 
Consequently, it provides relatively similar classifier 
performance results in both cases, suggesting that ports might 
not be very useful when making a more sophisticated tree.  

The 5-NN classifier provides similar performance by 
including or excluding ports in the feature set. It can be 
interpreted that even by not considering the ports in the feature 
set the samples are still distributed in the feature space in a 
way that samples with the same label are distributed close to 
each other. 

Naïve Bayes has the largest performance improvement 
when using ports in its feature set. In Naïve Bayes, features 
are assumed to be independent. Although it is not a realistic 
assumption, Naïve Bayes works well in many cases. Hence, it
seems reasonable to assume that feature dependence could be 
compensated for by the addition of more features to the 
feature set, and results in improved performance. 

It seems clear that using ports as features has different 
effects on the built classification models based on their nature; 
however, overall it improves the performance. One can decide 
to use ports in a feature set for the detection of brute force 
attacks based on these results; however, some considerations 
need to be taken into account. Ports are categorical features 
which can take a value ranging from 1 to 65535. It is not 
practical and unlikely to see all these values when building a 
classification model for detecting brute force attacks. As a 
result, some new port values can be seen at test time that have 
not been seen during training. This causes the classifier to rely 
on other features to make the classification decision. A 
classifier like C4.5D that ignores some characterizing features 
in building its model because of the presence of ports in its 
feature set might not work well attempting to classify samples 
with new port values at test time. In future works we plan to 
investigate this matter by testing the models on new collected 
data. Overall, while ports act as discriminative features, they 
might make a classification model too specific to the training 
data and can also cause the learner to eliminate some other 
important discriminating features when building the model. 
This can happen because rule-based models, like decision 
trees, tend to prefer using categorical features with a lot of 
different values when building their models.  

To use the discriminating power of ports while not letting 
the high number of values of those features affect a classifier 
like decision tree in such a way that it ignores other good 

383



features, one solution would be to use domain knowledge to 
make a coarser categorization on the port values – we plan to 
examine this aspect in our future work. Using the domain 
knowledge on the brute force attack ports can be separated 
into groups which represent whether they are likely to be 
participants in a brute force attack or not.  

Table II: Average AUC statistics from 4 runs of 5-fold CV 

Including ports in the feature set
Classifier mean std median min max

5NN 0.9988 0.0009 0.9990 0.9964 0.9999
C4.5D 0.9979 0.0008 0.9979 0.9960 0.9993
C4.5N 0.9893 0.0046 0.9880 0.9826 0.9987

NB 0.9975 0.0016 0.9979 0.9938 0.9997
Not including ports in the feature set

Classifier mean std median min max
5NN 0.9902 0.0019 0.9907 0.9902 0.9934

C4.5D 0.9880 0.0023 0.9885 0.9819 0.9907
C4.5N 0.9892 0.0017 0.9895 0.9846 0.9918

NB 0.9707 0.0040 0.9708 0.9634 0.9783

V. CONCLUSION

The brute force attack has been and still is, one of the most 
prevalent attacks on the Internet. In this paper we investigate 
the use of machine learning methods to detect brute force 
attacks at the network level by using flow data. To this end we 
collected real word data which was labeled by network 
experts. Using the labeled data, we trained 4 different 
classifiers and evaluated their results based on average AUC 
values obtained across 4 runs of 5-fold cross-validation. Our 
results show that with the application of machine learning 
methods, we can achieve very good prediction results in 
detecting SSH brute force attacks.

Further, we investigated the effect of using ports in the 
feature set when training the classification models. Our results 
suggest that even while ports can improve the classification, it
might result in classifiers, such as the decision tree, to ignore
some other good features when building the model. This can 
affect the classification performance in the case of seeing new 
ports that had not been encountered in the training dataset. 
This happens because ports are categorical features which can 
take a large number of potential values. It leads to a bias by 
the decision tree classifier to use ports in its structure and 
make a large number of different rules based on different port 
values instead of making more general rules based on the 
other discriminating features. Moreover, if at some later time a 
new port value is seen the classifier is likely to have a difficult 
time labeling that particular instance. We plan to investigate 
this matter in our future works by testing models on new
collected data. 

For future work we aim to collect additional network flow 
data from the production network and test the trained model to 
observe its performances on the training data versus the new 
test data, thus, evaluating how the fitted model will behave on 
a real-world unseen test dataset. Future work may also include 

applying machine learning methods in the detection of 
distributed brute force attacks at the network level.  

REFERENCES 

[1] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, 
"Lessons Learned from the Deployment of a High-
interaction Honeypot," in Dependable Computing 
Conference, 2006. EDCC '06. Sixth European, Coimbra, 
2006.

[2] "Hewlett-Packard Development Company. Top Cyber 
Security Risks Threat Report for," 2010. Available: 
http://dvlabs.tippingpoint.com/toprisks2010.

[3] SiLK:
https://tools.netsa.cert.org/silk/.

[4] R. Bezut and V. Bernet-Rollande, "Experimental Study 
of Dictionary Attacks on SSH," Technical report, 
University of Technology of Compiegne, 2010.

[5] J. Owens and J. Matthews, "A Study of Passwords and 
Methods Used in Brute-Force SSH Attacks," in USENIX 
Workshop on Large-Scale Exploits and Emergent Threats 
(LEET), 2008.

[6] D. Ramsbrock, R. Berthier and M. Cukier, "Profiling 
Attacker Behavior Following SSH Compromises," in 
Proceedings of the 37th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks, 2007.

[7] C. Seifert, "Analyzing Malicious SSH Login Attempts," 
http://www.symantec.com/connect/articles/analyzing-
malicious-ssh-login-attempts. [Accessed 2006].

[8] DenyHosts:
http://denyhosts.sourceforge.net/.

[9] BlockHosts:
www.aczoom.com/blockhosts/.

[10] D.Gerzo.BruteForceBlocker: 
danger.rulez.sk/index.php/bruteforceblocker/.

[11] M. Kumagai, Y. Musashi, D. Arturo, L. Romana,K. 
Takemori, S. Kubota, and K. Sugitani, "SSH Dictionary 
Attack and DNS Reverse Resolution Traffic in Campus 
Network," in Intelligent Networks and Intelligent Systems 
(ICINIS), 2010 3rd International Conference on,
Shenyang, 2010.

[12] M. Javed and V. Paxson, "Detecting Stealthy, Distributed 
SSH Brute-Forcing," in Proceedings of the 2013 ACM 
SIGSAC conference on Computer & communications 
security, Berlin, Germany, 2013.

[13] E. L. Malecot, Y. Hori, K. Sakurai, J. Ryou, and H. Lee, 
"(Visually) Tracking Distributed SSH BruteForce 
Attacks?," in In 3rd International Joint Workshop on 
Information Security and Its Applications, 2008.

[14] M. Roesch, "Snort - Lightweight Intrusion Detection for 
Networks," in Proceedings of the 13th USENIX 
Conference on System Administration, Seattle, 
Washington, 1999.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. 

384



Reutemann and I. H.Witten, "The WEKA Data Mining 
Software," SIGKDD Explorations, vol. 11, no. 1, pp. 10-
18, 2009.

[16] J. Vykopal, T. Plesnik and P. Minarik, "Network-based 
Dictionary Attack Detection," in Future Networks, 2009 
International Conference on, Bangkok, 2009.

Not Brute Force

Figure 1: Partial view of the common parts of C4.5D and C4.5N 
decision trees when not using ports in the feature set 

385


