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Abstract—The large quantity of data flowing through network
equipment demands that effective and efficient models be built to
identify whether sessions are healthy or malicious. These models
can be complex to build, and may rely on manually-labeled data.
As a result, it is desirable to update or rebuild these models as
rarely as possible without impairing classification performance.
In this work, we consider the Kyoto dataset, training models on
a single day’s worth of data and testing these models under two
circumstances: using 12 datasets gathered between six and twelve
months after the training date, and using 9 datasets gathered
between 18 and 19 months after the training date. In all cases,
we apply three feature rankers (in addition to no feature ranking)
and consider four classification models. We find that the results
for the “near-term” 12 datasets are similar to those from the
“long-term” 9 datasets, demonstrating that once a model has
been built, it can potentially be used for over a year afterwards.

Keywords-Network Flow, Intrusion Detection, Long-Term Pre-
diction, Classification

I. INTRODUCTION

Large computer networks make large targets for attackers,

and therefore network security is an essential element of

maintaining such networks. Although network security has

many elements, a core component is monitoring sessions

flowing across the network’s border (to or from systems which

are outside of the network) to determine if they are malicious.

There are two well-known constraints on these rules: they

must be effective, able to accurately detect malicious sessions

while not stopping normal, “healthy” sessions, and they must

be efficient, able to perform this analysis extremely quickly

despite the vast amount of traffic which may be flowing over

the network.

A third constraint which must also be considered when

creating such rules is how often they must be re-trained. In

general, the process of building a classification model is much

more computationally intensive than the process of executing

it: once the model’s internal schema and parameters have been

set, using it to assign labels to future instances is generally

much simpler. In addition, acquiring labeled data can be very

time-consuming: models which can approximate hand-labeling

sessions as malicious or healthy must be training using hand-

labeled data. Even with automated labeling, the process of

inspecting each sessions to assign a label may be too time-

consuming for real-time applications and may require fine-

tuning which is not feasible on a regular basis. Thus, it is

important to discover how effective models can be when built

on one set of data and tested on data from much later, after

the attack profiles have potentially changed.

In this paper, we perform such an investigation using data

from the Kyoto 2006 dataset [10]. This collection includes net-

work session information from a honeypot network collected

on a daily basis for over 2.5 years (from the end of 2006

to the middle of 2009). This makes it unique compared to

earlier network security datasets which do not allow for this

type of long-range model training and testing. To understand

how effective models can be when they are built on one day’s

worth of training data and tested on a separate day’s worth of

data, we built all of our models using the 2008-01-01 dataset,

but consider two collections of training data: a “near-term”

collection which contains two datasets per month from July

to December of 2008, and the “far-term” collection which

contains one dataset per week for the months of July and

August, 2009. More frequent datasets were used from 2009

because the Kyoto dataset collection stops in August of 2009.

Using our training data from the beginning of January, 2008,

we built classification models with four learning algorithms:

5-Nearest Neighbor, Naı̈ve Bayes, and two forms of C4.5 De-

cision Trees. We also considered the use of feature selection,

a family of techniques used to reduce the number of features

in order to eliminate noise and unnecessary features. Although

the Kyoto dataset only has 19 features (after eliminating those

which directly predict the class label in order to be fair by not

relying on these features), as noted earlier efficiency is a major

goal of malicious session prediction approaches, so anything

which can help reduce the complexity of the model should

be considered, especially as feature selection can also help

improve model effectiveness. We tested three forms of feature

ranking as well as considering the “no feature selection” case

as a baseline.

We found that generally speaking, models built from the

2008-01-01 training data were extremely effective both on

the near-term and far-term datasets. Performance was slightly

better on the near-term datasets (usually giving Area Under

the Receiver Operating Characteristic (ROC) Curve (AUC)

values greater than 0.999) compared with the far-term datasets

(which were only able to reliably exceed AUC values of 0.99),

but in both cases the models had very high performance.

Among the learners, 5-Nearest Neighbors usually gave the

best performance, although this could depend on the choice

of dataset and feature selection strategy: C4.5 (either form)

typically came next, with Naı̈ve Bayes giving the worst
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classification performance. As for the rankers, Signal-To-Noise

showed the best performance overall, especially on the near-

term datasets, while the Receiver Operating Characteristic

ranker was second-best on the near-term datasets (but not on

the far-term datasets, where everything other than Signal-To-

Noise was tied for second place). Overall, these results show

that models can be utilized over 1.5 years after they have

been trained, and that feature selection is important not only to

improve computational efficiency but to improve classification

performance.

The remainder of this paper is organized as follows: Related

works on the topic of feature selection for intrusion detection

may be found in Section II. Details of the classification

algorithms and feature selection strategies used, as well as

our performance evaluation approaches, are provided in Sec-

tion III. The Kyoto dataset itself is discussed in more detail

in Section IV. Section V contains our results and discussion.

Finally, Section VI presents our conclusions and ideas for

future work.

II. RELATED WORK

A number of machine learning and data mining approaches

has been applied in IDSs [5], [6]. Machine learning techniques

analyze the input data and find patterns in the known data

which can then be used for making decisions on previously

unknown (unseen) data. As Lappas et al. [4] explains, there

are some specific aspects of data mining that can contribute

to an intrusion detection project. Some of these aspects which

are more related to detection of attacks are anomaly detection

(which removes normal traffic from the network analyst’s

workflow to help improve the focus on abnormal traffic),

classification (which predicts a specific record as being attack

or normal), and clustering the data in natural categories. Data

mining methods can be differentiated based on their model-

ing functions, whether they are supervised, unsupervised, or

semi-supervised, and their choice of performance criteria and

algorithms.

In [7] and [8], Novakov et al. proposed a hybrid anomaly

detection method based on two popular statistical and spec-

tral anomaly detection methods. Statistical anomaly detection

methods consider the deviations from normal trends in data

as anomalies. The normal trend of data is obtained through

statistical analysis. Spectral analysis methods, also known as

frequency analysis methods, analyse the time series to reveal

anomalies. In their proposed hybrid method, Novakov et al.

have chosen the popular PCA-subspace anomaly detection

method as the statistical method and well-known Haar Wavelet

analysis as the spectral method to build their hybrid approach.

The PCA-subspace method is based on applying PCA to the

data matrix. It detects the anomalies based on the correlation

between data metrics (features). Basically, the feature space

is transformed to the principal component space. This space

is then divided to two normal and residual subspaces. By

applying a threshold on the Euclidean magnitude squared of

the transformed records to the residual sub-space, one can

detect the anomalies. The Haar Wavelet actually measures

the amount and magnitude of abrupt changes in the data

trend which can lead to detection of anomalies. The proposed

combination of these is called Hybrid PCA-Haar Wavelet

analysis. First PCA is applied on a modified time shifted

matrix of data. The instances are then projected to the residual

subspace produced by applying PCA. In the second phase Haar

Wavelet analysis is applied on the projected data to detect

anomalies. This hybrid approach examines network traffic in

time bins. Various aggregate features are extracted for the

flows which fall into a specific time bins. They applied their

method on the Kyoto 2006 dataset. Based on their results the

hybrid approach is able to detect anomalies which neither the

PCA nor Haar Wavelet approaches were able to detect.

Beaver et al. [1] propose a near real time machine learning

system to provide network intrusion detection by discriminat-

ing normal traffic from malicious traffic. In their proposed sys-

tem architecture a traffic acquisition part captures the network

data and aggregates it into network flows. Then the analysis

part of the system extracts features from network flows and

trains a classifier based on observed network traffic. In their

proposed system architecture any machine learning approach

can be used as the analysis method. In their paper they have

used AdaBoost as a supervised machine learning method,

conducting their experiments on simulated data produced with

the Lariat tool. The attacks are injected into normal traffic to

compose their anomalous network traffic. They mention that

their method is able to detect new zero-day attacks (attacks

that have not been in the training phase), however there is

no description on attacks and their types. To examine their

machine learning approach on operational data they applied

a semi-supervised variant of it on the Kyoto dataset [11].

The semi-supervised methods use both labeled and unlabeled

data in the learning phase. They have shown the ability to

generalize well based on a significantly smaller set of labeled

samples. Using a semi-supervised approach makes it possible

to learn the system in the environment where it is going

to be developed (in situ learning). They used the Laplacian

Eigenmaps as a Semi-Supervised method to network intrusion

detection. Using a small number of labels with a semi-

supervised method reduces the costs associated with learning

in situ, making it a more viable approach.

In [9], Sallay et al. use data mining for a real-time adaptive

intrusion detection alert classifier to discriminate correct alerts

from false positives in a high speed network. Their approach

is based on self-trained SVM with several learning scenarios.

The experiments are done on the Kyoto 2006, ISCX 2012, and

KDDCUP 99 datasets.

Kumar et al. [3] present a multi-objective evolutionary-

based approach to generate a pool of noninferior individual

solutions and ensemble solutions thereof. The final ensemble

method can be used for intrusion detection. Here, the multi-

objective genetic algorithm is used to select an optimal model

which combines the objectives of attack detection rate, normal

traffic detection rate, and diversity of evolved models. There

are three phases for the proposed approach. Phase one evolves

a set of individual Naive Bayesian solutions by selecting
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different feature subsets of the original feature space. The

second phase generates (evolves) a set of ensembles based

on the output models from phase one. In the third phase

an integration of the base classifiers is performed to make

the prediction of the final ensemble. The major issue in the

proposed approach is that it takes a long time to compute

fitness functions in various generations.

It is important to note that no previous work has considered

the use of machine learning for building models which will be

used for long-term prediction. While some IDSs are intended

to run without modification for a long period of time, these do

not use machine learning to generate their rules, and thus are

not as tuned to the specific system they are monitoring. The

present work considers models which were built using data

from a specific system, and tested using data from the same

system between 6 and 19 months later.

III. METHODS

In this work we used four classification algorithms and three

feature rankers (in addition to the “no feature selection” case)

to build our models, along with the Area Under the ROC Curve

metric to evaluate out models. These are all discussed in detail

below.

A. Classification Algorithms

Four learners were chosen for our analysis: 5-Nearest

Neighbor (5-NN), two forms of C4.5 Decision Trees (C4.5D

and C4.5N), and Naı̈ve Bayes (NB). These learners were all

chosen due to their relative ease of computation and their

dissimilarity from one another. Additional learners were ex-

plored during our preliminary investigation (Logistic Regres-

sion, Multi-Layer Perceptron, and Support Vector Machines),

but these were found to take significantly more computa-

tional resources while also giving worse classification results.

All models were built using the WEKA machine learning

toolkit [2], using default parameters unless changes (which

will be discussed) were deemed appropriate based on previous

research. For all classification models, the “malicious session”

class was considered as the positive class, with the “normal,

healthy session” class as the negative class.

The k-nearest neighbors, or k-NN, learner is an example of

an instance based and lazy learning algorithm, which uses only

the training data for building its hypothesis (without creating

statistics or models from that data). The k-NN learner does this

by calculating the distance from a given test sample to every

training instance, and the predicted class is derived from the

k nearest neighbors. Specifically, when there is a test sample

that needs to be classified, the classes for each of the k closest

training samples (for this paper, we chose k = 5, and thus the

algorithm as a whole is called “5-NN”) are found, and the

weighted sums for each class are calculated (using 1
distance as

the weighting term). The prediction will be the class with the

largest cumulative weight [13].

C4.5 Decision Trees (implemented as J48 within WEKA) are

a form of tree-based learner which builds a decision tree where

each node divides instances into two or more branches based

on the values of one of their features. The C4.5 algorithm

uses a normalized version of Information Gain to decide which

feature is most useful for dividing the instances into groups

which correspond to the class values. This feature is used for

the root node. Following this, the algorithm iterates: a new

node is created under each branch, finding the most-useful

feature when applied to the remaining instances (those which

would flow to this part of the tree). Finally, the algorithm

halts when a stopping criterion is met, such as when each leaf

node contains only instances from a single class. When using

a decision tree to classify an unknown instance, its values are

tested to determine its path through the tree, and the leaf node

it finishes at will determine its class. In the present work, we

employed both a version of C4.5 using the default parameter

values from WEKA (denoted“C4.5D”) and a version where

Laplace smoothing was turned on and tree pruning was turned

off (denoted “C4.5N”).

Naı̈ve Bayes (NB) uses Bayes’ Theorem to deduce the pos-

terior probability that the instance is the member of a specific

class. Ideally, the classifier would find the posterior probability

directly and then assign each instance to the class for which

it has the highest posterior. Unfortunately, it is very difficult

to calculate the posterior directly. Therefore it is necessary to

use Bayes’ Theorem, which states that the posterior equals

the ratio of the prior multiplied by the likelihood over the

evidence. This process can be further simplified by certain

assumptions. The evidence is always constant for the specific

data set and therefore can be ignored for the purposes of

classification. The likelihood formula, p(F1, . . . , Fn|C) can be

simplified to
∏

i p(Fi|C) by making the naı̈ve assumption that

all of the features are conditionally independent from all of

the other features. This naive assumption with the removal of

the evidence parameter creates the Naı̈ve Bayes classifier [13].

p(C|F1, . . . , Fn) = p(C)
∏

i

p(Fi|C)

B. Feature Selection Techniques

Although feature selection encompasses a wide range of

techniques, including feature ranking (which evaluates the

quality of each feature individually and ranks the results),

filter-based subset evaluation (which applies a statistical metric

to various feature subsets to discover the best subset), and

wrapper-based subset evaluation (which builds classification

models with different feature subsets to discover which will

produce the best model), in this work we consider three

forms of feature ranking. These were chosen to represent

three broad families of feature ranking technique: Chi-Squared

(CS), representing commonly-used rankers often found in the

machine learning literature; Receiver Operating Characteristic

(ROC), representing threshold-based feature selection (TBFS);

and Signal-To-Noise (S2N), representing First Order Statistics

(FOS) based feature selection. CS utilizes the χ2 statistic

to measure the strength of the relationship between each

independent variable and the class. ROC, as with other TBFS

techniques, considers each feature individually with the class

value and pretends that the feature’s value (normalized to
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lie between 0 and 1) is a posterior probability prediction of

the class value: the ROC value is calculated (as discussed in

Section III-C) using this value. S2N, like all FOS rankers, uses

first order statistics like mean and standard deviation to score

the features; in particular, S2N finds the ratio of the difference

between each class’s mean value for a given feature divided

by the sum of the standard deviations of the class’s values.

Based on preliminary evaluation, we chose the top six

features from each ranked list when building models with that

feature selection approach. We also considered the “no feature

selection” strategy, employing all features from the dataset for

model-building.

C. Performance Evaluation

To evaluate the quality of our classification models, we

used Area Under the Receiver Operating Characteristic (ROC)

Curve (AUC) as our metric. AUC builds a graph of the True

Positive Rate vs. False Positive Rate as the classifier decision

threshold is varied, and then uses the area under this graph

as the performance across all decision thresholds. Note that

this is the same metric as is used in the ROC ranker, but it

differs in one important way: when used as a ranker, ROC

operates solely on the normalized values of a single attribute,

pretending that these are the output of a classifier. When AUC

is used to evaluate our classification models, however, it is

based on the actual output of those classification models. The

different acronyms are used to highlight this distinction.

Because all models (including both feature selection and

classification) were trained on the 2008-01-01 data prior to

being tested on separate datasets, no cross-validation was

necessary.

IV. CASE STUDY

While a number of intrusion detection datasets exist, one

major flaw with many such datasets is their artificial nature.

The popular KDDCUP 99 dataset [12] has been used by

many studies, but is entirely artificial and was generated over

a decade ago. To resolve these problems, Song et al. [10]

developed what they refer to as the Kyoto 2006 dataset. Unlike

previous datasets, this is not composed solely of artificial data:

although the “normal” traffic was generated artificially, this

was done on honeypots, collections of real or virtual servers

which appear to be valuable targets from the perspective of

potential attackers. Song et al. employed a number of different

types of honeypots, including a range of Windows, MacOS,

and Solaris servers with different security settings and some

embedded devices such as printers and TV sets. Once any

malicious traffic was detected on a given honeypot, it was fully

wiped and rebooted into its clean state, to give future attacks

the same system profile. In addition to utilizing real (and not

artificial) attack data, the Kyoto 2006 dataset is unique in

containing a long duration of data: the honeypot systems were

left exposed to the internet for almost three years (November

2006 through August 2009). For all captured sessions, 24

features were collected: 14 network session features similar

to those used in the KDDCUP 99 dataset, and 10 features

Date Total # of Instances # Normal # Attack
2008-01-01 111,589 61,462 50,127
2008-07-10 92,371 72,863 19,508
2008-07-25 123,275 78,519 44,756
2008-08-10 124,393 64,759 59,634
2008-08-25 124,736 87,253 37,483
2008-09-10 114,301 75,749 38,552
2008-09-23 76,538 53,703 22,835
2008-10-10 98,705 79,298 19,407
2008-10-25 75,734 61,647 14,087
2008-11-10 101,462 78,875 22,587
2008-11-25 80,508 43,716 36,792
2008-12-10 125,187 66,459 58,728
2008-12-25 124,406 79,537 44,869
2009-07-01 125,198 65,054 60,144
2009-07-08 124,537 73,350 51,187
2009-07-15 125,688 70,065 55,623
2009-07-22 125,442 66,182 59,260
2009-07-29 124,279 68,446 55,833
2009-08-05 128,347 72,953 55,394
2009-08-11 127,173 67,823 59,350
2009-08-19 126,461 72,800 53,661
2009-08-26 125,937 75,801 50,136

TABLE I
DETAILS OF THE DATASETS

which included security analysis of each session and IP/port

numbers for each session.

Due to the large quantity of data collected in the Kyoto 2006

dataset (over 93,076,270 sessions in total, 50,033,015 normal

and 43,043,255 attack), in the present work we consider a

reduced version of this data. All of our feature selection

and model-building employs only the data from January 1st,

2008, which contains 111,589 instances total (61,462 normal,

50,127 malicious). Both “near-term” and “far-term” datasets

were utilized to test these models: the near-term collection

contains datasets from July to December of 2009, while the

far-term collection contains datasets from July and August

of 2009. Table I contains all of the dates we used, with the

number of instances and number of normal/attack instances.

In the near-term (2008) block, we used data from the 10th

and 25th of each month, except for September 2008, as no

data was available from September 24th through the end of

the month. For the far-term (2009) data, each date is exactly

one week after the previous date, except for the 8/11/2009

data. We chose 8/11/2009 as opposed to 8/12/2009 because

the dataset for 8/12/2009 had an abnormally small number of

instances (only 10,716), and thus we were concerned that this

dataset had problems which might make it inappropriate for

our analysis.

In addition, although the original data had 24 features,

we excluded the security analysis of each session (because

we wanted to test if our models could work effectively

without this analysis), the Destination IP Address feature

(as the honeypots which were targeted by outside attacks

had different IP addresses from those which only received

simulated healthy traffic, making this feature also unrealistic of

real-world problems), and the class label (which was counted

among the original 24), giving us 19 independent features.
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V. RESULTS

The results for models built using the dataset from 2008-01-

01 are presented in Tables II and III, representing testing the

models on the near-term (6–12 months later, from 2008-07-01

to 2008-12-25) and far-term (18–19 months later, from 2009-

07-01 to 2009-08-26) data, respectively. In total 15 models

were trained on the 2008-01-01 data, for different combina-

tions of the four learners and four forms of feature selection

(three ranking techniques and the “no feature selection” option

for comparison), with the combination of CS feature ranking

and C4.5D classification omitted for computational reasons.

For all choices of test dataset and feature selection approach,

the results from the best learner are printed in bold while those

from the worst learner are printed in italics.

As can be seen from Table II, the results on the near-

term data are extremely good: for all dates between 2008-

07-01 and 2008-10-25, the model built using S2N and the

top-performing learner (either 5-NN or C4.5N) will have an

AUC performance value above 0.999, and combining the ROC

ranker with the 5-NN learner will always give an AUC value

above 0.99 for all 12 of these datasets. Generally speaking,

the 5-NN learner performs best, especially towards the middle

of the date range (where it performs best for three of the four

feature selection strategies), but even elsewhere it will usually

tie or exceed the next-best learner. Unfortunately, as 5-NN can

be computationally intensive to process, it is not as feasible in

practice: fortunately, a well-built C4.5N model may be applied

more easily to large datasets, and these results are also very

good, always having at least one ranker with an AUC value

greater than 0.99 (and in fact, with the exception of the 2008-

11-10 dataset’s value of 0.98977, the combination of S2N and

C4.5N always exceeds an AUC value of 0.99). Although the

NB model is even simpler to perform on a large dataset, its

results suffer more than any other learner: while the CS and

S2N rankers often give good results with this learner, they still

will frequently have AUC values below 0.99, sometimes even

below 0.95. Whether or not this performance is acceptable

when considering their ease of computation will depend on

the specific hardware constraints of a particular practitioner.

Finally, the C4.5D learner only is the best choice when used

without any feature selection, and sometimes not even then.

Because feature selection is shown to improve performance

here, we therefore do not recommend the use of C4.5D.

Considering the feature selection approaches, we find that

“no feature selection” is almost never the best choice, at least

when considering the best learner for each feature selection

strategy. However, it is also rarely the worst approach: more

often, CS gives the worst performance (again, considering

the best learner for each feature selection strategy). Between

ROC and S2N, S2N will usually be the best ranker, although

for certain datasets ROC is best. Overall, across all of the

datasets, we would recommend the use of one of these two

rankers (most likely S2N) along with a learner chosen based

on the computational resources available: 5-NN if compu-

tation does not pose a meaningful restriction and maximal

Test Feature Learner
Dataset Selection 5-NN C4.5D C4.5N NB

2008-07-10

No FS 0.99820 0.99836 0.99654 0.98764
CS 0.98956 — 0.98520 0.98552

ROC 0.99909 0.99863 0.99914 0.98816
S2N 0.99947 0.99912 0.99950 0.99649

2008-07-25

No FS 0.99874 0.99952 0.99682 0.98129
CS 0.99926 — 0.99583 0.99233

ROC 0.99939 0.99638 0.99897 0.96832
S2N 0.99960 0.99920 0.99964 0.98927

2008-08-10

No FS 0.99722 0.99782 0.99745 0.98862
CS 0.97955 — 0.99555 0.99225

ROC 0.99928 0.99739 0.99885 0.98605
S2N 0.99943 0.99895 0.99938 0.99645

2008-08-25

No FS 0.99088 0.99708 0.99458 0.98700
CS 0.99893 — 0.99660 0.99452

ROC 0.99403 0.99762 0.99913 0.98877
S2N 0.99962 0.99943 0.99965 0.99692

2008-09-10

No FS 0.99508 0.99187 0.99394 0.98659
CS 0.99458 — 0.99535 0.98608

ROC 0.99816 0.99709 0.99898 0.98451
S2N 0.99807 0.99895 0.99958 0.99757

2008-09-23

No FS 0.99809 0.99252 0.98971 0.97441
CS 0.93165 — 0.98604 0.97542

ROC 0.99881 0.99554 0.99830 0.97342
S2N 0.99943 0.94104 0.99645 0.99910

2008-10-10

No FS 0.99715 0.98938 0.98526 0.97826
CS 0.99316 — 0.97713 0.98024

ROC 0.99922 0.99200 0.99413 0.98504
S2N 0.99936 0.95132 0.99501 0.99646

2008-10-25

No FS 0.99932 0.99947 0.99541 0.98350
CS 0.99042 — 0.98990 0.97289

ROC 0.99969 0.99292 0.99577 0.97895
S2N 0.99962 0.99670 0.99660 0.99911

2008-11-10

No FS 0.99469 0.98841 0.97940 0.98238
CS 0.97970 — 0.98477 0.98543

ROC 0.99687 0.98847 0.99354 0.98055
S2N 0.99578 0.95695 0.98977 0.99670

2008-11-25

No FS 0.98143 0.99774 0.99470 0.94754
CS 0.99127 — 0.98993 0.94808

ROC 0.99432 0.87831 0.99008 0.95099
S2N 0.98762 0.99562 0.99683 0.97578

2008-12-10

No FS 0.99016 0.99724 0.99078 0.97426
CS 0.99750 — 0.98846 0.98859

ROC 0.99252 0.98390 0.98416 0.96760
S2N 0.99257 0.94983 0.99292 0.98094

2008-12-25

No FS 0.96021 0.99072 0.98547 0.88475
CS 0.83107 — 0.99839 0.96755

ROC 0.99121 0.73633 0.95580 0.89229
S2N 0.99633 0.99591 0.99657 0.93357

TABLE II
AUC RESULTS FOR NEAR-TERM (6–12 MONTHS) TEST DATASETS

performance is desired, NB for extremely computationally-

constrained environments, and C4.5N when neither of these

constraints dominate the problem.

Across the 12 datasets in Table II, there are few clear trends

that vary with time. We do find that 5-NN is particularly

effective towards the middle of this period (the 2008-09-23,

2008-10-10, and 2008-10-25 datasets), while C4.5N is more

effective towards the beginning (before the area where 5-

NN predominates) and very slightly towards the end. As for

rankers, while S2N is the best ranker for the first seven of

the 12 datasets, for the later results it is not always the best:

for the 2008-10-25 and 2008-11-10 dates, ROC is better than

S2N, and for the final three dates, either “no feature selection,”
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Test Feature Learner
Dataset Selection 5-NN C4.5D C4.5N NB

2009-07-01

No FS 0.98416 0.99517 0.98998 0.93560
CS 0.99594 — 0.98776 0.93972

ROC 0.98813 0.97659 0.97500 0.92236
S2N 0.98759 0.99812 0.99655 0.99263

2009-07-08

No FS 0.97484 0.94669 0.98375 0.96057
CS 0.99514 — 0.93943 0.97557

ROC 0.99752 0.99435 0.99600 0.97577
S2N 0.99762 0.99862 0.99687 0.99864

2009-07-15

No FS 0.98066 0.92207 0.97940 0.95124
CS 0.99815 — 0.94032 0.95684

ROC 0.99792 0.99000 0.99032 0.95876
S2N 0.99796 0.99631 0.99208 0.99847

2009-07-22

No FS 0.98984 0.99158 0.98621 0.93282
CS 0.99222 — 0.97976 0.94226

ROC 0.99082 0.98647 0.98659 0.92770
S2N 0.98779 0.98910 0.98974 0.97237

2009-07-29

No FS 0.87439 0.99909 0.99869 0.93344
CS 0.99852 — 0.99743 0.94051

ROC 0.92009 0.57019 0.89387 0.90711
S2N 0.88255 0.99929 0.99915 0.96439

2009-08-05

No FS 0.99175 0.99900 0.99748 0.94751
CS 0.98548 — 0.99390 0.93008

ROC 0.99146 0.99204 0.99251 0.94158
S2N 0.99717 0.99880 0.99847 0.99142

2009-08-11

No FS 0.99296 0.99853 0.99616 0.97056
CS 0.99575 — 0.99084 0.96532

ROC 0.99908 0.99399 0.99698 0.97089
S2N 0.99903 0.99837 0.99775 0.99797

2009-08-19

No FS 0.93471 0.99885 0.99764 0.91773
CS 0.95607 — 0.99632 0.89347

ROC 0.94256 0.91848 0.96257 0.90635
S2N 0.99234 0.99823 0.99854 0.96936

2009-08-26

No FS 0.99623 0.99836 0.99587 0.96964
CS 0.99770 — 0.99369 0.96028

ROC 0.99928 0.99578 0.99656 0.94544
S2N 0.99932 0.99790 0.99744 0.97674

TABLE III
AUC RESULTS FOR FAR-TERM (18–19 MONTHS) TEST DATASETS

CS, or both are better than S2N and ROC (although for these

three, S2N is always better than ROC). Thus the reliability of

S2N as the most effective feature selection strategy may only

hold for earlier test datasets which are closer to the training

dataset.

The results for the far-term test datasets (found in Table III)

are relatively similar to those from the near-term test datasets:

although performance is somewhat lower, it is still quite high

overall. For each dataset, there is at least one combination of

learner and feature selection approach which gives an AUC

value greater than 0.99, and using the S2N ranker with the

C4.5N learner exceeds this threshold in all but one dataset

(for the 2009-07-22 dataset, it only has an AUC value of

0.98974). As with the earlier datasets, the results using the 5-

NN learner tend to be as good or better than the other choices

of learner, although the pattern here is less clear: rather than a

clear temporal trend of one learner dominating for a time until

another learner overtakes it, the optimal learner switches from

one dataset to the next. In fact, C4.5D is sometimes the best

learner when used with the S2N feature selection algorithm,

which never occurred with the earlier datasets. Nonetheless,

the pattern of 5-NN being the best learner, C4.5 (either D or N)

being moderate, and NB being the worst remains; the relative

computational constraints of these models also remain, so the

optimal choice will depend on the specific application.

Similar to comparing the learners, the rankers show much

the same pattern here as with the earlier datasets, albeit with

a higher degree of random variation. S2N is still generally

the best ranker overall, but is only the best ranker for five

of the nine datasets, with “no ranking” being best for two

datasets and CS and ROC each being best once. In all but one

of these cases (when CS is best), however, S2N is second-

best. The second-place ranker is also less clear on these far-

term datasets compared with the near-term results: CS, ROC,

and “no feature selection” are all second-place two times, in

addition to the aforementioned three cases where S2N was

second-place. CS is third-place (compared to fourth-place)

more often than ROC, and likewise ROC is fourth-place more

often than CS, but it is hard to make a fair comparison between

these two rankers: beyond S2N giving the best results, there is

no clear pattern among the remaining three feature selection

strategies.

As the nine far-term datasets are much more closely packed

with one another in terms of time, it is more difficult to

find patterns that change over the course of this dataset: the

optimal choices for learner and ranker show no broad patterns,

and even the overall performance doesn’t change significantly:

there is a slight increase in performance towards the end of the

time period, but this could be random fluctuation. If anything,

the biggest difference between the near-term datasets and the

far-term datasets is this very lack of pattern; however, because

the second collection has roughly twice as many datasets per

unit time as the first collection, it is hard to say if this pattern

comes from genuine differences or merely examining minuet

more carefully in the second, far-term collection. Nonetheless,

for both collections the models built on the 2008-01-01 dataset

perform quite well, especially given that new attack types were

developed and performed in this dataset over the months and

years following the 2008-01-01 dataset.

VI. CONCLUSION

In this work, we considered whether malicious session

detection models trained on one set of data could be used

on subsequent data, taken from either the “near-term” (6–

12 months later) or the “far-term” (18–19 months later). To

perform this analysis, we used data from the Kyoto 2006

dataset, built models with four different learners, and used

three forms of feature selection in addition to no feature

selection.

We discovered that our models were quite effective on both

collections of data. Although the near-term test datasets gave

slightly higher results than the far-term datasets (AUC values

above 0.999, not just above 0.99), in both cases the perfor-

mance was quite high. The learners showed a fairly consistent

pattern across all test datasets, with the most time-consuming

learner (5-NN) giving the best performance, and the least time-

consuming learner (NB) giving the worst performance. The

C4.5D and C4.5N learners fall in between these two extremes
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both in terms of classification performance and time com-

plexity. As for the rankers, S2N was the best choice for both

collections of datasets, but although ROC was second-best for

the near-term data, on the far-term data all three approaches

other than S2N tied for second-best. Based on these results, we

would recommend the use of S2N, most likely with the C4.5N

learner (which provides a good balance of performance and

efficiency), when building malicious session detection models

which should remain effective for over 1.5 years after being

built.

Future experiments can consider even longer-term models

(e.g., starting with training data earlier than 2008-01-01), as

well as explore a wider range of feature selection approaches.

Additional datasets may be considered, but only those which

have at least two years of consistent daily network intrusion

data from a single experimental source.
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