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Abstract— Age-related macular degeneration (AMD) is the
leading cause of blindness in developed countries. Subretinal
fluid (SRF) and sub-retinal pigment epithelium (sub-RPE) fluid
are signs of AMD and can be detected in optical coherence
tomography images. However, manual detection and segmen-
tation of SRFs and sub-RPE fluids are laborious and time
consuming. In this paper, a novel pipeline is proposed for
automatic detection of SRFs and sub-RPE fluids. First, top and
bottom layers of retina are segmented using a graph cut method.
Then, a Split Bregman-based segmentation method is used to
segment dark regions between layers. These segmented regions
are considered as potential fluid candidates, on which a set of
features are generated. After that, a random forest classifier is
trained to distinguish between the true fluid regions from the
falsely detected fluid regions. This method shows reasonable
performance in a leave-one-out evaluation using a dataset from
21 patients.

I. INTRODUCTION

Age-related macular degeneration (AMD) is the leading
cause of blindness in developed countries [1]. The “wet” or
neovascular form of AMD is responsible for approximately
80-90% of severe vision loss [2]. It is characterized by an
outgrowth of abnormal choroidal vessels that invade the sub-
retinal and intraretinal spaces causing exudation and hemor-
rhage and leading to vision loss. Treatment with intravitreal
injections of drugs that inhibit vascular endothelial growth
factor (VEGF) has become the gold-standard [3]. Optical
coherence tomography (OCT) has become a mainstay in
ophthalmology and is extensively used in retinal clinical
practice. It is vital for treatment decisions in a retinal practice
for diseases such as AMD, diabetic macular edema and
retinal vein occlusion. For AMD, OCT enables physicians
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(a) Original OCT B-scan (b) Expert manual segmentation

Fig. 1. Original OCT B-scan and expert manual segmentation: (a)
subretinal fluid and sub-RPE fluid are indicated in the original B-scan image,
(b) yellow represents subretinal fluid, blue represents sub-RPE fluid.

to detect and characterize appearances of neovascular AMD
within the retina, such as intraretinal fluid (IRF), subretinal
fluid (SRF), and sub-retinal pigment epithelium (sub-RPE)
fluid and deposit. In major clinical trials, OCT images
was assessed manually to guide treatment with anti-VEGF
intravitreal injections [4]. However, manual assessment has
two major problems: it is time consuming and has significant
interobserver discrepancy. The Comparison of Age-Related
Macular Degeneration Treatment Trials (CATT) [5] showed
that there is a 25% interpretation discrepancy of retinal fluid
between OCT reading centers and the clinicians. OCT rea-
ding centers detected the more fluids, which means clinicians
are possibly undertreating patients. The development of an
automatic fluid detector can help the physicians in fast and
accurate detection of IRF, SRF and sub-RPE fluid in OCT
images and ultimately improve productivity and the quality
of health cares.

Previously, a few efforts have been made on computerized
assistance and automatic detection of IRF, SRF and sub-
RPE fluid and related medical image analysis problem. In
[6] Split Bregman-based segmentation was used to provide
raw segmentation which can be used later in expert manual
segmentation. Attempt of automatic detection of IRF has
been made by [7] using intensity and size-based criteria.
Although its reported sensitivity and specificity are high, this
thresholding based method may fail when other structures,
e.g. dark layers, show similar intensity profile as fluids
in more complicated situation. It also requires empirical
parameter tuning given different datasets. Automatic closed-
contour segmentation in ophthalmic images was proposed
in [8], and used to segment fluids given their positions. In
addition to fluid detection related works, many publications
have been done on speckle noise reduction [9]–[12] and
automatic retinal layer segmentation [9], [10], [12]–[14] for
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OCT images.
In this paper, we describe a novel pipeline that works well

for the automatic detection of SRF and sub-RPE fluid. First
potential fluids will be segmented by a combination of graph
cut and Split Bregman segmentation methods. Then, each
segmented potential fluid is treated as a single data point
with features describing its relevant properties and labels.
Based on these features and labels, a random forest classifier
is then trained on the output of the prior segmentation step
and is used to detect SRFs and sub-RPE fluids in new
unlabeled OCT B-scans. However, we found that parameters
and features that work well for detection and classification
of SRF and sub-RPE fluid regions didn’t work well for
detecting IRF due to higher variability in its appearance.
Hence, a modified algorithm dedicated to the detection of
IRF is currently under development, and will be described
elsewhere.

II. METHODS

A. OCT Data Acquisition

OCT images were acquired using the Spectralis R© device
(Heidelberg Engineering, Heidelberg, Germany). For each
OCT volume data, 25 B-scans were acquired. Each frame
is an averaged 9 individual B-scans at the same location
using the automatic real time (ART) eye tracking technology
by Heidelberg Engineering. Each image contains 512 ×
496 pixels (Figure 1) with a corresponding resolution of
4µm(axial)×11µm(lateral). These 25 frames are 234µm
apart and are not spatially “connected”, therefore they are
segmented and processed separately in following analysis.

B. Segmentation and SNR Balancing

To define the region of interest of fluid detection analysis,
top and bottom retina layers need to be segmented. First,
original B-scans were smoothed by a bounded variation-
based method [15]. The top layer, internal limiting membrane
(ILM), and bottom layer, Bruch’s membrane (BM), were then
segmented using a graph cut-based method [13], [16] on the
BV-smoothed images (Figure 2 (a)). The segmented bottom
layer is usually above sub-RPE fluid, which may cause
misdetection. Accordingly, convex hull [17] of the original
bottom layer was taken and smoothed, and considered as a
substitute for the true bottom layer (Figure 2 (b)).

A fast variational segmentation algorithm [18] was used
for first round segmentation of potential fluids. This Split
Bregman-based method is globally convex, fast and robust to
noise. We applied the segmentation method directly on noisy
OCT B-scans. Low intensity regions including background
and potential fluids are separated with high intensity tissues
(Figure 2 (c)). As we are only interested in detecting fluid
regions between top and bottom layers, other dark regions
were removed from segmented results according to already
segmented layers(Figure 2 (d)). After initial segmentation,
we remove any fluid regions smaller than 30 pixels. This
size prior is due to that regions smaller than 30 pixels are
likely artifacts caused by speckle noise.

(a) Graph cut layers (b) Convex graph cut layers

(c) Split Bregman segmentation (d) Segmentation inside layers

(e) Detection (f) Detection vs. expert label

Fig. 2. Processing pipeline: (a) graph cut segmented layers, (b) smoothed
convex hull of graph cut layers, (c) Split Bregman-based segmentation,
(d) segmented regions between layers, (e) automatic detection result after
random forest classification, (f) automatic detection overlaid with manual
segmentation ground truth.

Because the data acquired from different patients has
different intensity distribution profile, normalization was
performed by a signal-to-noise ratio (SNR) balancing [7]
to each B-scan. We used the mean intensity of background
and segmented potential fluids to represent noise level N ,
the mean intensity of segmented bright tissue to represents
signal level S. The SNR balancing was done by I1 =
(I0−N)/(S−N), where I1 is the new SNR balanced image
and I0 represents the original image.

C. Sample and Feature Generation

For each fluid candidate region, a bounding rectangle was
defined that it is large enough to represent the surrounding
information, but not too large to include too much unrelated
area. In this application, the algorithm will first try to enlarge
the tight bounding box by 1.5 times but at maximum 10
pixels in each dimension. If the area of the rectangle has not
reached twice the fluid size, it will enlarged to be so. Based
on the bounding box and the original segmentation, shape
and intensity features are extracted from each sample. Shape
features include major and minor axis length, ratio of major
and minor axis length, perimeter, area, ratio of perimeter
and area, eccentricity, orientation, variance of the cyst height
at each column. Intensity features include average intensity
inside the cyst, average intensity outside the cyst, intensity
difference of inside and outside, intensity variance inside,
intensity kurtosis inside and intensity skewness inside. These
properties constitute a 15 dimensional feature vector for each
sample. For determining its label (whether a segmentation
corresponds to a true fluid), we use the following definition:
If given a detected region A, there exists a expert labeled true
fluid region B, such that r = area(A∩B)

min(area(A),area(B)) is larger
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than a certain threshold, then A is considered to be a correct
detection. Under this definition, if A or B are different in
size, but one covers the other, A is still considered to be true
detection.

D. Classification

Based on generated features and labels, a random forest
[19] classifier was trained to classify the regions segmented
as potential fluid regions. Among supervised learning algo-
rithms, random forest is known to be fast at testing time and
effective in wide range of applications [20]. At training time,
n decision trees will be trained separately based on randomly
selected features at each time. At testing time, to classify a
single sample, majority vote of all these decision trees will
be used.

We found that majority vote, which correspond to a 50%
voting threshold, tended to be accurate but less sensitive on
true fluid prediction. To find more true fluids at the same time
allow more false positives, a modified voting procedure was
applied, enabling the use of a floating threshold. Here, this
floating threshold was acquired using cross validation [21] on
the training set. Given a training set, it will be divided into n
parts. At each iteration, one of them will be used as validation
set. The other n − 1 parts will be used to train a random
forest. After these random forests were trained, they were
used to do predictions on the corresponding validation sets.
The threshold will be tuned to maximize the Fβ measure:

Fβ = (1 + β2) · recall·precision
β2·precision+recall

where recall and precision are given by recall =
1

1+FN/TP and precision = 1
1+FP/TP . Here, TP represents

number of true positives, namely the number of detected
true fluid regions. FN represents number of false negatives,
which is the number of undetected true fluid regions. FP
represents number of false positives, corresponding to the
number of wrongly detected normal regions. In this case,
larger β value results in a higher recall indicating the detector
is sensitive to fluid regions; smaller β value results in
a higher precision which means the detected regions are
highly possible to be true fluid regions. After the desired
decision threshold has been acquired by the cross validation,
all the training data will be used to train a random forest
to do predictions on test data. While training the random
forest, we adopted the cost sensitive scheme by assigning
different weight to each sample based on its label, w =
number of true detections
number of false detections is assigned on false detections and
1 on true fluids.

In the following analysis, we refer “segmentation” as
the first round combined graph cut and Split Bregman-
based segmentation, “classification” as the random forest
classification on regions already segmented in the first round,
and “detection” as the whole pipeline of “segmentation” +
“classification”. Under “classification”, “fluid classification”
means classifying segmented regions and “B-scan classifi-
cation” means classifying B-scans with and without expert
labeled fluids. Under “detection”, ”fluid detection” means
the whole pipeline of segmentation and classification to
find fluids and “B-scan detection” means detecting B-scans

with expert labeled fluids. Here we won’t distinguish “B-
scan classification” and “B-scan detection”, due to they
are equivalent operations on all B-scans. However, “fluid
classification” and “fluid detection” are different because
“fluid classification” is done on all segmented regions, while
“fluid detection” refers the pipeline of segmentation and
classification.

III. RESULTS

The proposed novel algorithm was applied on a dataset
of 21 OCT volumes from 21 subjects diagnosed with AMD.
Manual OCT image segmentation was performed by three
masked expert raters (AM, SB, MY), which was conside-
red as ground truth for evaluating the automatic detection
algorithm. The raters viewed the volumes on a personal
computer screen and identified the SRFs and sub-RPE fluids
on all frames using the segmentation editor plugin (Theodor-
Boveri-Institut für Biowissenschaften, Würzburg, Germany)
built for ImageJ (National Institutes of Health, Maryland).
These data were automatically segmented, transformed to
features, and classified according to the above described
methods. For evaluation, we calculated precisions and recalls
of segmentation, fluid classification, fluid detection and B-
scan detection.

After the combined graph cut and Split Bregman segmen-
tation on all of 21 data, the recall is 0.752, the precision
is 0.148. Which means that 75.2% expert labeled fluids
were automatically segmented in the first round segmentation
and 14.8% algorithm captured regions correspond to expert
segmented true fluids. In terms of B-scans, the recall is 1
and precision is 0.287.

For evaluating fluid classification, fluid detection and B-
scan detection, we perform a leave-one-out test. At each
iteration, we use 20 out of 21 data as training set to train
a classifier and use it to do prediction on the one unused
test data. Due to randomization, random forest gives slightly
different results in each run. Therefore, experimentation with
same parameter was run for 10 times, and their averages and
standard deviations are presented.

The β value is an arbitrary choice based on the user’s
trade-off between recall and precision. In Figure 3, the
precision-recall, β-recall and β-precision curve are plotted
with errorbars for fluid classification, fluid detection and
B-scan detection. According to errorbars in Figure 3, the
algorithm is more random when β is small and performs
more stable when β is large. In practice, however, β will
rarely be assigned a small value, since β will be set to a
relatively higher value to increase the recall and enable more
sensitive detection. In addition, we can see, from Figure 3
(e) and (f), that when β is set to a relatively higher value,
the algorithm is able to detect almost all of the B-scans
containing fluids with not too many false positive B-scan
predictions.

IV. DISCUSSION AND CONCLUSION

In this paper we present a novel segmentation-learning
pipeline of automatic SRF and sub-RPE fluid detection.
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Fig. 3. Quantitative performance analysis: (a) precision-recall for fluid clas-
sification, (b) β-precision and β-recall for fluid classification, (c) precision-
recall for fluid detection, (d) β-precision and β-recall for fluid detection,(e)
precision-recall for B-scan detection, (f) β-precision and β-recall for B-scan
detection.

Potential fluids were segmented from original B-scans and
transformed to a set of descriptive features, on which random
forest classification was performed to predict true fluids.
Quantitative analysis was done on the performance of detec-
tion; the precision-recall curve suggests that highly sensitive
and reasonably specific detection can be achieved by setting
proper β value in the Fβ measure. The free parameter β will
usually be set to high value to ensure high recall in diagnosis.

In comparison with the previous automatic detection me-
thod [7], our method only relies on labeled training data
and requires no empirical parameter tuning. It emphasizes on
training the computer rather than training the human expert.

To improve the detection performance in the future, a
better segmentation algorithm that is able to capture more
fluids is needed. While in terms of classification, more data
will increase its accuracy. The present results show that given
a small dataset of 21 volumes, each containing 25 images,
the algorithm performance is reasonably good. As more data
is accumulated in this study, we expect both higher recall
and precision for classification.
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