
  

 

Figure 1.  The parameters to be estimated: Input mean )(t , the 

amplitude of the fluctuating input )(t , and the membrane time 

constant  . 
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Abstract— Because neurons are integrating input signals and 

translating them into timed output spikes, examining spike 

timing may reveal information about inputs, such as population 

activities of excitatory and inhibitory presynaptic neurons. Here 

we construct a state-space method for estimating not only such 

extrinsic parameters, but also an intrinsic neuronal parameter 

such as the membrane time constant from a single spike train. 

I. INTRODUCTION 

A series of spike times recorded from cortical neurons in 
vivo looks random, but is originally determined by input 
signals coming from other neurons. Mathematical methods 
have been developed for inferring the activities of presynaptic 
excitatory and inhibitory neuronal populations from a 
recorded spike train. However, most of the former studies 
were constructed under an unrealistic assumption that the 
population activities are constant over time [1-3]. Recently, 
we introduced a state-space model into this inference method 
to allow for temporal fluctuation in the population activities of 
presynaptic neurons [4].  

The method of input inference can be constructed by 
inverting a generative model, which represents the forward 
neuronal transformation from inputs to spikes. In our previous 
study, we have chosen a standard leaky integrate-and-fire 
(LIF) model as a generative model and assigned typical 
parameters that were conventionally adopted. However, the 
input inference may crucially depend on the choice of a 
forward generative model and its parameter such as the 
membrane time constant of a neuron. Thus it is most desirable 
to estimate not only input parameters, but also a neuronal 
model parameter from a single spike train (Fig.1).  

Here we extend the state-space method to make it possible 
to estimate both extrinsic input parameters and an intrinsic 
neuronal parameter. The estimation method is tested with 
synthetic data. 

II. GENERATIVE MODEL 

A. Leaky integrate-and-fire model 

As a forward generative model that mimics the neuronal 
transformation from inputs to output spike times, we adopt a 
standard LIF model, given by
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where  , 
TH

V , 
RESET

V , R , and )(tI  represent the 

membrane (leak) time constant, threshold potential, resetting 

potential, membrane resistance, and input current, 

respectively. We set some parameters at standard published 

values: 20
TH

V  mV [5-7], 6-
THRESET

VV   mV [8,9], 

and 40R  MΩ  [6]. The membrane time constant   is 

considered largely dependent on the neuronal characteristics, 

which differ significantly between neurons, in particular 

pyramidal neurons and interneurons [6,7,10-13]. Because the 

membrane time constant crucially determines the neuronal 

firing characteristics, we leave this parameter to be 

determined by data. 
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B. Ornstein-Uhlenbeck process 

We assume that the membrane potential )(tV  is subject to 

small abrupt increment or decrement in response to excitatory 

or inhibitory spike inputs, respectively. If such postsynaptic 

potentials occur randomly in time, the input current can be 

approximated as a diffusion process with a mean drift   and 

temporally uncorrelated fluctuation )(t [14-16],   

 ),()( ttI    

where )(t  is white noise satisfying the ensemble statistics 

0)( t  and )'()'()( tttt   . If the 

uncorrelated fluctuation )(t  is Gaussian, the membrane 

potential obeys the Ornstein-Uhlenbeck Process (OUP), and 

the interspike interval (ISI) is given as the first-passage time of 

the OUP [16-18].  

With the knowledge of typical amplitudes of excitatory and 

inhibitory postsynaptic potentials, the mean drift   and the 

fluctuation amplitude   can be related to the population 

activities of excitatory and inhibitory inputs, 
E
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I

r  , 
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where 
E

a  and 
I

a  are the unitary excitatory and inhibitory 

postsynaptic potentials, respectively [15,17]. 

III. BAYESIAN INFERENCE 

A.  State-space model 

The probability that a neuron generates output spikes at times 

},,,,{}{
210 nj

ttttt   can be obtained with the 

above-mentioned generative model, given the extrinsic input 

parameters and an intrinsic neuronal parameter. Here, we 

construct a method of estimating the time varying input 

parameters )(t   and )(t  , and the membrane 

time constant  , given the output spike times }{
j

t . The 

Bayesian posterior distribution of the parameters is given by  
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where  represents the parameters )),(),((  tt . 

We give the prior distribution for extrinsic and intrinsic 

parameters in a factorized form, 

 )())(),(()(  PttPP   

For the prior distribution of the extrinsic input parameters 

)(),( tt  , we incorporated their tendency to vary slowly by 

penalizing the large gradient, 
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where 
j

  and 
j

  respectively represents the input 

parameters at the time of the jth spike )(
j

t and )(
j

t , and 

 21
,    is a set of hyperparameters representing the 

degree of their constancy. This prior distribution represents 

input parameters exhibiting a random walk, and thus the 

variance should be rescaled with the jth ISI, 
1


jjj

tts . 

Initial values of input parameters, 
00

, , were set to the 

values estimated through the method of moments [1] on the 

assumption that input parameters are constant over time.  

The membrane time constant   has been considered to 

range over 5–40 ms [6,7,10-13]. This range can be used to 

formulate a prior distribution of  ; we assigned an 

exponential distribution given by 
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where we have taken 20  ms, thus allowing for the 

above-mentioned range of possible time constant. 

In estimating the probability of having spikes under 

temporally varying input parameters )(t  and )(t , we 

approximate these parameters being constant during each ISI 

as follows:  
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It should be noted that the constant input parameters do not 

mean that the input current was constant; on the contrary, the 

input current fluctuates rapidly in given amplitude 
j

 , 

representing bombardment of a huge number of input spikes 

from presynaptic populations of neurons. 

B.  Choice of hyperparameters 

In our previous study, we have selected hyperparameters 

that specify the degree of temporal modulation of input mean 

and variance under the Empirical Bayes method, or a principle 

of maximizing the marginal likelihood function with the 

Expectation Maximization (EM) algorithm [19,20]. However, 

this computation turned out to be highly complex and only 

feasible with up to hundreds of spikes even for the two 

hyperparameters [4]. A major cause for this limitation is the 

need to solve a complex integral equation to estimate the ISI 

distribution function for any given set of input parameters 

),(  [21,22]. Here, we further want to estimate the 

membrane time constant   in addition to these two input 

parameters. Accordingly, the marginalization integral 
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Figure 2.  Estimation of input parameters. Three spike trains depicted 

in raster are derived from neurons of different membrane time constants, 

(a) 10 ms, (b) 20 ms, (c) 40 ms. The dotted 

lines represent input parameters, and the color-shaded areas represent 

the estimated values. 

becomes even more complex, and the computational 

complexity of this marginalization is beyond our available 

computational capacity. In the present study, we empirically 

choose the hyperparameters comparable with that have been 

chosen by the former study, leaving the hyperparameter 

selection an open issue. 

C.  Posterior distribution of the intrinsic parameter 

The posterior distribution of the membrane time constant 

 , given the data }{
j

t  can be computed by marginalizing the 

posterior distribution 
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We carry out the marginalization integral over all possible 

values of  
j

  and  
j

  by Kalman filtering and smoothing 

algorithm [4,23]. 

IV. RESULTS 

We assess the estimation methods by examining synthetic 
data obtained with several values of the membrane time 
constant. 

A.  Synthetic data 

We generated synthetic data by simulating neuronal spiking 

with the LIF model given nonstationary input parameters 

comprising the mean and fluctuation of input current. We have 

simulated three LIF models possessing time constant,  = 10, 

20, and 40 ms. The other parameters of the LIF model were 

chosen to match those that were incorporated into the 

estimator.  

The temporally fluctuating input parameters, the mean 

input )(t  and the amplitude of uncorrelated fluctuation 

)(t , were chosen as    


 

 .2sin)(

,2sin)(

0

0









Ttt

Ttt
 

with the phase shifted by 2/  . We have chosen the 

means 
00

,  and fluctuation amplitudes,  ,  so that 

the resulting firing rates vary in the range of 

2040  spikes/sec. 

B.  Estimation 

We applied our state-space model to three kinds of spike 

trains derived from the above-mentioned simulations. The 

inference of the input parameters is demonstrated by the 

maximum a posteriori (MAP) paths, by denoting as )(ˆ t  

and )(ˆ t . It is observed that the method gives reasonable 

estimates for the input parameters for each case (Fig.2).  

Regarding the estimation of the membrane time constant  , 

we demonstrate how a prior distribution of   (7) is 

transformed into a posterior distribution (10), given a spike 

train. In Fig.3, the posterior distribution functions for three 

kinds of spike trains are plotted together with the prior 

distribution given by the exponential function of the mean 

 =20 ms. It is observed that the wide prior distribution is 

concentrated to a narrow range in accordance of the original 

membrane time constant used for the data generation.  
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Figure 3. The prior and posterior distribution functions of the 

membrane time constant  . The prior distribution (7) is depicted in 

a black line and dark-shaded area. The posterior distributions are 

depicted in color lines and color-shaded areas. They are respectively 

obtained from three spike trains in Fig.2. 

V. DISCUSSION 

A state-space model for estimating both extrinsic inputs and 

an intrinsic neuronal parameter has worked successfully with 

regard to synthetic data. However, there are still unfinished 

problems. Firstly, the method should be tested with data 

generated by mismatched models. Our model covers the entire 

parameter range of the LIF model, allowing for the different 

membrane time constant, but does not cover the more realistic 

models containing more timescales and conductance-based 

models. Secondly, it would be worthwhile to test a particle 

filter for maximizing marginal likelihood, though it is not 

trivial if this helps. Thirdly, the method should be eventually 

applied to real biological data. In particular, it would be most 

interesting to examine the cases in which extrinsic parameters 

such as   and    are shared by different neurons, while the 

intrinsic neuronal parameters   are different between 

neurons.  
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