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Abstract— Estimates of coefficients of a spherical harmonic
Fourier decomposition of the cortical surface can be obtained
solely using MEG/EEG data and free energy as objective
function. A stochastic methodology based on a Metropolis
Search followed by a Bayesian Model Averaging is proposed
to reconstruct cortical anatomy based functional information.

I. INTRODUCTION

MEG/EEG brain imaging estimates neuronal activity

based on magnetic or electrical fields due to neuronal activity

measured outside the head. The non-invasive acquisition is

a highly desirable characteristic of both MEG and EEG, but

it complicates the reconstruction because of the resultant

ill-posed inverse problem. Nowadays a large number of

approaches are intended to reduce the uncertainty of the

problem by defining it as linear, relating the neural activity

and the data with a lead-field or propagation matrix [1], [2],

commonly generated with a Structural Magnetic Resonance

Image (sMRI) [3].

The use of a lead-field matrix introduces several extra

challenges, especially because it has model reductions and

linearisations that may affect the accuracy of the algorithms

[3]. However this sensitivity to the underlying source model

can be exploited. In a previous work we presented the

possibility of using MEG data to reducing the uncertainty

on the location of the brain due to co-registration error

[4]. There, the location of the head inside the MEG helmet

was unknown, and using the free energy value [5] as cost

function (obtained with the Multiple Sparse Priors algorithm

–MSP–, see [6]), it was possible to determine the most

probable location of the head. In this paper we extent this

idea and show how this approach can be extended to other

characteristics of the brain such as its size and shape.

Several anatomical parameters such as the brain location,

its size and shape can be related in a single mathematical

model using a Fourier harmonic decomposition of the brain

structure [7]–[9]. It consists of representing the cortical

surface with a weighted sum of spherical harmonics. This

Spherical Harmonic Representation (SPHARM) has several
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advantages: (i) It is a tractable mathematical model of the

cortical surface structure; (ii) it allows reducing the complex-

ity of the brain structure whilst maintaining the topology of

the surface (iii) it is a Fourier coefficient decomposition so

different spatial scales are quantified in different harmonic

components.

In this paper, an optimisation procedure for recovering the

spherical harmonic coefficients of a subject specific cortical

model using only functional MEG data is proposed, using

the free energy for model selection as in [4]. Due to the

non-linear relation between the free energy and the spherical

harmonic coefficients, a Metropolis search [10] followed by a

Bayesian Model Averaging stage [11] are used for recovering

the structure of the cortical surface.

This paper is presented as follows, in Section II the

SPHARM representation is introduced together with the

effects of varying the coefficients, the use of free energy

for model selection, and the estimation procedure used. In

Section III synthetic MEG data generated with a realistic

Boundary Elements Method (BEM) head model was used for

recovering the SPHARM coefficients with no prior informa-

tion. Finally, in Section IV concluding remarks are presented.

II. THEORY

In this section the spherical harmonic representation

(SPHARM) is introduced in order to provide a mathematical

model of the structure of the cortical surface. Then, using

the negative variational free energy as a cost function, the

parameters of this mathematical model will be adjusted to

the best fitted model for a given MEG dataset, i.e., solely

using MEG data it will be possible to recover structural

characteristics.

A. Spherical harmonic representation of the cortical surface

Pial surface meshes can be extracted from sMRI using

FreeSurfer [12] software package, and a weighted Fourier

series (WFS) representation of the pial surface computed as

in [8], allowing the surface to be expressed as a weighted

linear combination of spherical harmonics. The WFS can be

expressed as a kernel smoothing technique described by

F k
σ
[f ](p) =

k∑

l=0

l∑

m=−l

e−l(l+1)σflmHlm(p) (1)

where σ is the bandwidth of the kernel, Hlm is the spherical

harmonic of degree l and order m, and the Fourier coeffi-

cients are given by flm = 〈f,Hlm〉 where f is determined
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by solving a system of linear equations. p is the spherical

parametrisation of a unit sphere, given in terms of the polar

angle θ and azimuthal angle φ, as

p = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) (2)

with p = (θ, φ) ∈ [0, π] ⊗ [0, 2π]. For this study, the

Fourier series expansion bandwidth σ = 0.001, used for

reconstruction of the pial surface, was selected based on a

previous study [7].

Each spherical harmonic Hlm is related to a structural

characteristic of the cortical surface, for example, as shown

in Figure 1(b) the first harmonic (harmonic zero) of the

original brain of Figure 1(a) is responsible of the location

of the head inside the MEG helmet (co-registration). Each

coefficient flm is formed by six parameters corresponding to

the three Cartesian coordinates for each hemisphere. Figures

1(c) and 1(d) show variations in the y-axis parameters of

several coefficients, controlling the size of the brain and the

shape of the sulci. Note that all variations in the coefficients

of Figure 1 were only performed over the left hemisphere,

i.e., both hemispheres can be controlled independently.

(a) Original brain (b) Moved hemisphere

(c) Resized hemisphere (d) Distorted hemisphere

Fig. 1. Figs. (b), (c) and (d) show different variations in the coefficients of
the SPHARM of the brain of Fig. (a); note how they allow moving, resizing
and modifying the shape of each hemisphere separately.

B. Free energy for model selection

The use of spherical harmonics gives the possibility to

determine the best fitted structure of the cortical surface for

a given MEG/EEG dataset. It can be achieved by determining

the higher free energy value among several inverse solutions.

The free energy [5] is a trade-off between the accuracy of

the inverse solution and the complexity needed for obtaining

it [13]. It approximates the log of the model evidence when

the estimation of the neural activity approximates the truth.

Figure 2 shows the free energy for an increasing degree k

of the Fourier series expansion, note that, for this simulated

dataset, the free energy saturates at around k = 20 coeffi-

cients. In this example synthetic MEG data was used (see

Section III for details).
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Fig. 2. The number of harmonics used in the SPHARM directly affects
the quality of the solution. A minimum of 20 harmonics provides stable
free energy values when solving the MEG inverse problem.

The procedure to obtain the free energy value for each

degree k in Figure 2 was the following: (i) Synthetic data

were generated from 3 sources on a cortical surface formed

from 42 harmonics ((ii)) After selecting the k value a new

brain structure was obtained as proposed in [7], [8]; ((iii)) A

lead-field matrix was generated for the new brain structure;

((iv)) an inverse solution was obtained with the MSP algo-

rithm using the new cortical surface and the original synthetic

MEG data, and ((v)) the free energy value of the solution

was computed. All these stages were implemented within the

SPM8 software package (http://www.fil.ion.ucl.ac.uk/spm/),

including the lead-field computation with a 3-layers BEM

head model.

The use of MEG data for recovering structural informa-

tion has some constraints that must be accounted for. The

anatomy can only be recovered if there is enough neural

activity on it. Figure 3(a) shows simulated neural activity

over the left hemisphere (the full experiment is explained in

Section III), Figure 3(b) shows the free energy for the x-axis

parameter of the first coefficient (head location) in the left

hemisphere, a global maximum over the true value of the

parameter is clear, but free energy landscape for variations

in the parameters of the right hemisphere (where no source

were simulated) is flat.

The translucent glass brains of Figure 3(a) show the

frontal, lateral and superior views of the 512 dipoles with

highest variance during the time windows of interest.
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(a) Simulated neural activity in
a single hemisphere
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(b) Free energy for variations in SPHARM
coefficients

Fig. 3. (a) Synthetic MEG data from three sources of neural activity were
simulated. (b) the free energy was used for determining the actual value of
the parameters in the left hemisphere, right hemisphere parameters did not
achieve a global maximum because of lack of information.

C. Metropolis search plus Bayesian Model Averaging for

estimating the Fourier coefficients

Due to the high non-linearity of the parameters of each

coefficient with respect to the free energy, added to noise

issues and a large number of parameters (18 for the first

three harmonics), it is necessary to implement a robust opti-

misation algorithm in order to recovery the actual values of

the SPHARM coefficients. In this paper the same procedure

proposed in [4] was implemented. It consists in a Metropolis

search followed by a Bayesian Model Averaging (BMA)

stage.

The metropolis search used consists in the following

algorithm [4], [10]:

1) Select a random sample from the set of parameters that

construct the coefficients of the spherical harmonics,

solve the MSP algorithm and compute its free energy

value.

2) Use a Gaussian proposal distribution to obtain a new

set of parameters near their previous values. Perform

the MSP reconstruction for the new head model and

compute its free energy value.

3) Take a decision: if the free energy is higher than

the previous iteration, accept it; if it is lower only

accept it if compared with a random value it has

higher probability (the free energy corresponds to a

probability value).

4) Return to the second step and repeat until convergence.

The algorithm converges once the mean and variance of the

solution remain stable. The convergence criterion used here

was the same of [4].

Once the Metropolis search has converged, a burn in of the

first half of accepted values is performed in order to avoid

dependency on the seed; then, a Bayesian Model Averaging

is performed over the second half of accepted values. The

BMA consists in averaging all the solutions based on their

own probability, as follows:

1) Generate a posterior probability distribution of the

solutions based on their approximated evidence (com-

puted with the free energy).

2) Pick a set of parameters from this posterior probability

distribution.

3) Obtain a normal random variable using the mean and

covariance of the selected solution.

4) Iterate steps 2 and 3 at least 1000 times. The BMA is

not computationally intensive, this stage can take less

than 5 seconds.

5) Obtain a mean of the random variables.

These two stages will provide a mean and a interval of

confidence of the set of parameters. This solution is not

optimal but it is robust.

III. SIMULATION RESULTS

Several simulations with different configurations of

sources of neural activity were performed to test the proposed

approach. For each test a single trial dataset of 161 samples

over 274 MEG sensors was generated by projecting the

known neural source distribution into the sensor space. These

neural sources consisted on pure sinusoidal signals. Gaussian

white noise was added to the data to give a sensor level

Signal to Noise Ratio (SNR) of zero decibels (same signal

and noise power).

For each variation in the coefficients a new lead-field

matrix was computed. The inverse solution used for each

configuration was the MSP algorithm, it requires a distributed

set of dipoles covering the cortical surface. For this exper-

iment 8192 dipoles with fixed orientation perpendicular to

the cortical surface were used, their location in the head was

interpolated for each variation in the coefficients.

A. Metropolis search

For the example shown here, MEG data from three simu-

lated sources of neural activity inside the left hemisphere

(See Figure 3(a)) were used. The three left hemisphere

parameters of the first coefficient in the SPHARM were

used for the optimisation, none prior information was used

for recovering them (seeds from uniform distributions were

selected, see their ranges in Table I). Due to the non-linearity

of the free energy evolution, ten seeds were used and a

Metropolis search was performed for each of them, Figure 4

shows the free energy values of 100 iterations of the selected

chain of the Metropolis search.

B. Bayesian Model Averaging

Due to the non-linearity of the problem and the potentially

large number of unknowns (although only three for this

example) the Metropolis search may have accepted values

at noisy local maxima, these effects can be mitigated using

Bayesian Model Averaging. Also, the first half of accepted

values must be burned out in order to avoid dependency

on the seed. Then, the BMA stage was performed over the

second half of accepted values of the selected chain (red

circles in Figure 4).

The Table I shows the actual values of the three param-

eters, the seed of the selected chain and the final values of

the parameters after the BMA stage. Note how large errors

in the parameters were reduced to an average error of less
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Fig. 4. Free energy evolution after 100 iterations of the Metropolis search,
the red circles show the second half of accepted values used in the BMA
stage.

than 1 %. The randomly selected seed had a L2-norm error

of 62.2. The final value of the BMA over the second half of

accepted values was accurate, with a norm error of 0.47.

TABLE I

ERROR IN THE LEFT HEMISPHERE PARAMETERS OF THE FIRST

HARMONIC COEFFICIENT.

x parameter y parameter z parameter

true values -113.89 -22.92 35.71
prior ranges [-200 0] [-100 100] [-100 100]

seeds -105.61 -84.59 63.62
Initial error (%) 7.27 269.05 78.15

Final values -113.55 -22.61 35.61
Final error (%) 0.30 1.37 0.29

Posterior variance 1.7 6.2 2.9

IV. CONCLUSIONS

In this paper a procedure to reconstruct the cortical sur-

face with a spherical harmonic Fourier representation and

MEG/EEG data was presented. It consists in recovering

the parameters of the coefficients that weight the spherical

harmonics, using the free energy for model comparison. Due

to noise effects and high non-linearities, a Metropolis search

followed by a Bayesian Model Averaging were used for

providing a robust solution. This procedure allows reducing

uncertainties in the forward modelling, and in future work we

will look at the possibility of recovering a subject’s cortical

anatomys based on MEG data.
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