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I. INTRODUCTION 

 

Abstract—To make full use of electromyography (EMG) that 

contains rich information of muscular activities in active 

rehabilitation for motor hemiparetic patients, a couple of recent 

studies have explored the feasibility of applying pattern 

recognition technique to the classification of multiple motion 

classes for stroke survivors and reported some promising results. 

However, it still remains unclear if kinematics signals could also 

bring good motion classification performance, particularly for 

patients after traumatic brain damage. In this study, the 

kinematics signals was used for motion classification analysis in 

three stroke survivors and two patients after traumatic brain 

injury, and compared with EMG. The results showed that an 

average classification error of 7.9±6.8% for the affected arm 

over all subjects could be achieved with a linear classifier when 

they performed multiple fine movements, 7.9% lower than that 

when using EMG. With either kind of signals, the motor control 

ability of the affected arm degraded significantly in comparison 

to the intact side.  The preliminary results suggested the great 

promise of kinematics information as well as the biological 

signals in detecting user’s conscious effort for robot-aided active 

rehabilitation. 

 

Stroke is the second most common cause of death globally 
and the major cause of neurological disability [1]. While 
motor hemiparesis caused by stroke is one of the serious and 
common disabilities, traumatic brain damage is also an 
important cause of chronic hemiparesis, especially in the 
developing countries [1]. Currently, the rehabilitation robots, 
mostly providing passive physical therapy or resistance 
exercise, as well as the health care professionals, play an 
important role in assisting patients in their recovery.  

A number of stroke survivors and brain injured patients 
can regain some lost/weakened functions involved in their 
lower limbs using currently available passive rehabilitation 
techniques. However, the recovery of upper-limb functions, 
particularly the fine motor skills, is quite slow and often 
limited [2]. For the patients with severe impairment, the lack 
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of hand dexterity may persist in their remaining years, and 
impact their daily activities permanently. Therefore, the active 
rehabilitation techniques that put great emphasis on patients’ 
conscious effort during physical training have attracted 
increasing interests of researchers recently. The previous 
studies have proved that the active rehabilitation methods 
could enhance the therapeutic effect and have a potential 
acceleration of brain plasticity [3-7]. For example, Krebs et al. 
programmed the robot MIN-MANUS to only give assistance 
as needed when the patients using the system grasp a 
joystick-like handle to finish the tasks displayed in virtual 
environment.  Their results showed significant improvements 
in comparison with a group of stroke patients who received the 
traditional treatment [5, 6]. Tong et al. developed a robotic 
hand that can help stroke patients perform exercises beyond 
their initial range of motion by providing additional 
continuous torque proportional to the amplitude of EMG 
signal [7, 8]. 

It should be noted that with these robot-aided active 
therapies, EMG has also been used as a control signal to 
trigger the robotic system and to work in an “On-Off” mode, 
or make proportional control using the EMG amplitude[5-8]. 
Moreover, some exoskeleton hand robots could only assist 
users to perform simple functional tasks such as power grip [8]. 
The independent movement of each finger and the 
coordination of multiple muscles were rarely taken into 
account due to some technical limitations. Hence, the active 
rehabilitation is still a challenge in how to take full advantage 
of signals that contain the users’ motivation to inspire the 
user’s interest. Meanwhile, it would be important to extend the 
simple limb activity into more complex and coordinated limb 
activities for the final recovery of fine motor skills of upper 
extremity. 

To realize the identification of more complex movement 
intention of the users in active therapies, pattern recognition 
technique might be a promising choice. A number of studies 
have been conducted for decades by implementing 
EMG-based pattern recognition control strategy in upper limb 
prosthesis, and demonstrated good performance in restoration 
of users’ movement volition to control multiple degrees of 
freedoms [9, 10]. With the successes in control of 
multifunctional myoelectric prostheses, two research groups 
have noticed the potential uses of pattern-recognition-based 
methods in identifying movement classes for active 
rehabilitation robots [12,13].  They investigated the feasibility 
of applying the technique for the identification of multiple 
movements with stroke survivors in their preliminary studies. 
Lee et al. used ten channels of EMG recordings to classify six 
functional target tasks and got a mean classification accuracy 
of 71.3% for moderately impaired subjects and 37.9% for 
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severely impaired subjects [11]. Zhang et al. recruited 12 
post-stoke subjects and  acquired high-density EMG signals 
from 89 surface electrodes. Twenty forearm and hand 
movements were classified based on the EMG patterns [12]. 
However, it still remains unclear how much the motion control 
ability of the affected arm degraded in comparison with that of 
the intact side. Moreover, whether the use of additional signals 
(such as the kinematics information) could improve the 
classification performance? Additionally, the classification 
performance in brain injured patients who have similar 
symptoms and accepted similar therapy with the stroke also 
remains to be explored. In this study, both EMG recordings 
and the kinematics signals that reflect the flexure and 
abductions of fingers were used for identification of motion 
intention in the patients with chronic hemiparesis, respectively.  
The motion control ability in three stroke survivors and two 
brain injured patients was assessed based on pattern 
recognition approach. 

II. METHODS 

A. Subjects 

Five patients with chronic hemiparesis (all male, age 
19-61) participated in the study. Three of them are post-stroke 
subjects (designated as ST01-03) with the stroke onset time of 
2 months, 4 months and 4 years, respectively. Another two 
subjects (designated as BI01 and BI02) had the traumatic brain 
injury around one year and five years ago, respectively. They 
were chosen based on upper limb motion impairment level 
assessed by a physical therapist. According to the definition of 
the stages in the Brunnstrom Assessment Scale, they were in 

the stage �-and got the scores of 49-61 according to the 

Fugl-Meyer Assessment of Sensorimotor Recovery after 
Stroke,  in which 0 denotes no function and 66 normal 
function. It was the first time for all of the subjects to 
participate in this kind of research study. The protocol of this 
study was approved by Shenzhen Institutes of Advanced 
Technology, Chinese Academy of Science. All subjects gave 
written informed consent and provided permission for 
publication of photographs for a scientific and educational 
purpose. 

B. Experiment Protocol 

TABLE I.  LIST OF THE MOTION CLASSES INVOLVED IN THE STUDY 

Index Movement Index Movement 

1 Forearm flexion 12 Tool grip 

2 Forearm extension 13 Gun grip 

3 Forearm pronation 14 Thumb flexion 

4 Forearm supination 15 Thumb extension 

5 Ulnar abduction 16 Index flexion 

6 Radial adduction 17 Thumb-index flexion 

7 Hand close 18 Thumb-little flexion 

8 Hand open 19 Ball grip 

9 Pinch grip 20 Box grip 

10 Key grip 21 Cylinder grip 

11 Hook grip 22 No movement 

Before the experiment, we briefly explained the motion 
classes and experimental requirements to each of the subjects, 
and encouraged them to try 2-3 times to get familiar with the 
experimental procedure.  During the experiment, they were 
instructed to perform 21 classes of forearm and hand 

movements plus one “no movement” bilaterally, following the 
audio cues and the image displayed on the computer screen. 
These classes of the movements include 6 forearm movements 

and 15 hand gestures as listed in Table	. The subjects could 

choose to give up if they were unable to finish a given motion 
task. The subjects were required to maintain each movement 
for 6 s with a moderate force and repeat 6 times with a rest 
time of 8 s between every two successive movements. 

In this study, a commercial wireless biological signal 
acquisition system (Delsys Inc, Boston, USA) and a pair of 
data gloves (Fifth Dimension Technologies, Iriven, USA ) 
were used to  simultaneously record the EMG signals and 
kinematics information of both arms, respectively. For each 
subject, four parallel-bar EMG sensors were placed around the 
apex of the muscle belly in their arms, around 1-2 cm distal to 
the elbow crease, two were placed on the distal end over the 
flexor muscle and extensor muscle, and another two electrodes 
were placed on the thenar muscles and hypothenar muscles, 
respectively (Fig. 1). For comparison, another eight EMG 
sensors were also placed on the forearm and hand of the intact 
side at corresponding locations as on the affected side. In 
addition,  subjects would wear a pair of gloves on both hands, 
as shown in Fig. 1. The data glove was used to measure the 
finger flexure as well as the abduction between the fingers 
with 14 flexure sensors.  So a total of 8 channels of EMG 
signals and 14 channels of kinematics signals were recorded 
for each movement performed, for each arm. With the 
recording software, the EMG signals were filtered with a 
band-pass filter (20-450 Hz) and sampled at 2 kHz. The 
kinematics signals were scaled to 0-1 and sampled at 60Hz. 

 

C. Data Pre-processing and Classification  

Considering  that  the  major power  (about  95%)  of  
surface  EMG  signals  is  often  below  400–500  Hz,  the  
EMG signal recordings  were  down-sampled  to  1 kHz  to  
simplify  data  processing. To avoid mislabeling antagonist 
muscle activity as the actuated class, the active EMG data of 
each class were manually segmented.   

A sliding analysis window with a time length of 150ms 
and a time increment of 50ms was used in feature exaction. In 
this study, four commonly used time-domain features (mean 
absolute value (MAV), number of zeros crossings, number of 
slope sign changes, and waveform length) were extracted from 
each analysis window to represent the characteristics 
contained in the EMG recording. All these four features were 
also used for description of kinematics data. The feature 
matrix for each motion class was then fed into a classifier. For 
the simplicity and efficiency in computation, the linear 

 

Figure 1.  The placement of EMG electrodes and data glove wearing on 

both arm sides 
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discriminant analysis (LDA) pattern recogmt10n algorithm 

was used to build the classifier. Five-fold cross validation was 
used for model evaluation for each subject. The whole signals 

were randomly divided into five subsets and each time four of 
the five subsets were concatenated together to form a training 

dataset for building a classifier, and then the user-specific 
classifiers was tested with the remaining subset. In this study, 

the classification error was used as the measure index and a 
paired-t test was used for statistical analysis. 

III. RESULTS 

A. Comparison of Raw Data from Bilateral Arms 

For each subject, the raw signals from both the intact and 
affected arms were compared. Fig. 2 shows the root mean 
square (RMS) of one-channel raw EMG signal acquired from 

the affected arm and the symmetrical location of the 

contralateral intact arm, respectively, when a subject (STOl) 

was performing "hand open" for six times. It can be seen from 
Fig. 2 that the EMG signals illustrated a consistent pattern in 

doing a movement by either his affected arm or intact arm. 
However, the RMS values of EMG from the affected side 

were obviously lower than those from the intact side due to the 
weakness of his affected arm. Similar EMG characteristics 

also were found in the other seven channels. 
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Figure 2. Root mean squares of one-channel raw EMG signal acquired 

from both the intact and affected arms. The blue and red waveforms 

denote the RMS from intact and affected arm, respectively. 

B. Classification of Intended Motion 

In the experiments of doing intended movements, the 
subjects STOl and ST03 could not move five fingers 

independently with their affected hand due to the observable 
weakness ofleft arm for STOl and spasticity ofright arm for 

ST03. STOl finished 15 of the 22 movements and ST03 
finished 16 of the 22 movements. Subjects ST02, BIOl, BI02 

finished 21, 22 and 21 classes, respectively. 

Fig. 3 shows the classification errors using EMG for each 

subject. It can be clearly seen that the classification errors 
from the affected side was significantly higher than those from 

the intact side for all subjects (p-value<0.05). If taking no 
account of the specific etiology nor the number of achieved 

motion class of each subject, the average classification error 

across all the five subjects was 15.8±6.0% for the affected 

side and 7.8±3.5% for the intact side. 

C. Classification Comparison for Two Kinds of Signals 

The kinematics signals were also used in the motion 
classification and the results are shown in Fig. 4. The average 

classification error across all the five subjects was 7.9±6.8% 

for the affected side and 2.8±1.8% for the intact side. For 
each subject, the classification error from the affected side was 

higher than that from the intact side when using kinematics 

signals only, but the difference was not significant 
(p-value=0.15). 
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Figure 3. Comparison of classification performance for both arms of 

each subject using EMG. 
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Figure 4. Comparison of classification performance for both arms of 

each subject using kinematics signals. 
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Figure 5. Comparison of classification errors when usingEMG and 

kinematics data, respectively. 

Fig. 5 shows the comparison of classification errors when 

using EMG and kinematics signals from the affected side of 
every subject, respectively. The classification errors denoted 

with blue bars was computed with 8 channels of EMG and 
those denoted with dot-filled yellow bar was calculated using 

14 channels of kinematics signals. Obviously, the kinematics 
signals seem having a better classification performance in 

comparison to the EMG signals. However, the statistical 
analysis showed that the difference between the two kinds of 

signals was not significant for the affected side 
(p-value=0.09). 

IV. DISCUSSION 

Predicting the motor motivation of hemiparetic patients is 
of great importance in assisting them to execute some fine 

movements with the external motor assistive device, but also 
in inspiring the patients' initiative to participate in physical 

exercise so as to improve the effect of therapy. In this pilot 

study, three post-stroke patients and two traumatic brain 
injured patients were chosen as subjects after a rough 
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estimation of their motor function using clinical assessment 
scales. Their motor control abilities to perform multiple 
forearm and hand movements were evaluated in terms of 
motion classification error, which may alternatively provide a 
new, precise and quantitative measure of muscle activities and 
motor function. 

As shown in Fig. 3 and Fig. 4, the motor control ability of 
the affected side was worse than that of the contralateral intact 
side for all subjects with either EMG or kinematics signals. 
The observable muscle weakness and spasticity in these 
subjects might be account for this. With pattern recognition 
approach, the good classification performance lies in the 
quality of used signals, specifically the good intra-class 
consistency and obvious inter-class discrimination. But for the 
subjects with muscle spasticity, since the spastic antagonistic 
flexor muscle may hamper the contraction of agonistic 
extensor muscle, the abnormal muscle activation leads to 
abnormal EMG pattern and kinematics pattern consequently. 

Compared to EMG, the kinematics data recorded using 
data glove could have a better performance in motion 
classification (Fig. 5). This better classification performance 
of kinematics signals might come from more information 
acquired from data gloves where 14-channel kinematics 
signals were recorded in comparison to 8-channel EMG. On 
the other hand, the kinematics recordings acquired the fine 
hand motion activities intuitively which may have a high 
consistent data patterns, whereas the EMG recordings are 
from the muscles activities which may be affected by the 
subject’s contraction efforts, muscle fatigue, electrode shift, 
and more. Therefore, the EMG patterns in doing same 
movements would be easily decayed by many subjective 
factors and objective interference such as noise. It should be 
noted that although some previous investigations used the 
kinematics signal for the trajectory control of external 
assistive robots [13, 14], few reports applied the 
kinematics-information-based pattern recognition method into 
voluntary movement detection for hemiparetic patients. In our 
ongoing work, whether combining the two kinds of signals to 
predict the user’s motion volition more accurately will be 
investigated. 

It should be also noted that the patients who suffered from 
stroke or brain damage were both included in the study. 
Without the detailed knowledge of the specific cerebral lesion 
via EMG and kinematics information that acquired from limb 
extremity, the pattern recognition approach was proved 
effective and promising in robot-aided active physical therapy. 
Furthermore, this method might be also used for the physical 
therapy for the patients with cerebral palsy, multiple sclerosis, 
spinal cord injury and more. 
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