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Abstract— Diagnosis and severity staging of Parkinsons dis-
ease (PD) relies mainly on subjective clinical examination. To
better monitor disease progression and therapy success in PD
patients, new objective and rater independent parameters are
required. Surface electromyography (EMG) during dynamic
movements is one possible modality. However, EMG signals
are often difficult to understand and interpret clinically. In
this study pattern recognition was applied to find suitable
parameters to differentiate PD patients from healthy controls.

EMG signals were recorded from 5 patients with PD and
5 younger healthy controls, while performing a series of
standardized gait tests. Wireless surface electrodes were placed
bilaterally on tibialis anterior and gastrocnemius medialis and
lateralis. Accelerometers were positioned on both heels and used
for step segmentation. Statistical and frequency features were
extracted and used to train a Support Vector Machine classifier.

Sensitivity and specificity were high at 0.90 using leave-one-
subject-out cross-validation. Feature selection revealed kurtosis
and mean frequency as best features, with a significant differ-
ence in kurtosis (p=0.013). Evaluated on a bigger population,
this could lead to objective diagnostic and staging tools for PD.

I. INTRODUCTION
Parkinson’s disease (PD) is usually diagnosed and clin-

ically characterized by the four major motor symptoms
bradykinesia, tremor, rigidity, and postural instability [1].
Assessment of these motor symptoms is performed according
to the Unified Parkinson Disease Rating Scale (UPDRS) -
Part III [2]. This scale defines a series of standardized motor
tests to be performed by the patient, which are rated by
the clinician according to guidelines. Although video-based
teaching programs aim to improve objectivity, evaluation is
still subjective and a considerable inter-rater variability has
been reported [3]. This limits the comparability of individual
assessments and validation of medical interventions.

To resolve these problems and to create an objective as-
sessment of motor impairments different solutions have been
proposed. A standard approach is to determine objective gait
parameters like step length or foot clearance using marker-
based gait analysis [4]. However, this is only performed in
specialized gait laboratories and requires complicated setup.
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A recent approach to overcome these drawbacks is to
analyze parameters derived from wearable sensors [5]. This
includes the analysis of gait patterns [6], [7], foot-pressure
[8] or hand motion [9]. Applications are automatic quan-
tification of motor symptoms [5] and monitoring of motor
fluctuations [10]. However, these studies focus only on the
various motor symptoms resulting from PD and ignore their
neromuscular cause, which is a characteristic disturbance in
the myoelectric activation of the involved muscles.

Muscle activation is clinically measured using surface
electromyography (EMG), which is also used in PD for
tremor analysis [11], [12]. Recently, surface EMG signals
were also used to discriminate between PD and healthy
controls [13], [14]. However, these studies only consider
isotonic contractions of the upper extremities, which can
only be performed in a clinical setting. Previous work on
dynamic contractions includes fatigue during running [15],
freezing of gait [16] and signal decomposition [17]. However,
none of these studies provides EMG based biomarkers to
discriminate PD patients from healthy controls.

The purpose of this study was to automatically classify
between PD patients and healthy controls using surface EMG
signals from standardized gait tests. The main contributions
of this work are as follows: Firstly, a reliable and easy to
use study protocol with standardized gait tests was created
and applied to collect data from 10 subjects. Secondly, an
automated processing pipeline to perform step segmentation,
feature extraction and classifier training was set up. Thirdly,
the collected data was used to determine expected classifi-
cation rate and to reveal which muscles, tests and features
contribute most to classification accuracy.

II. METHODS

A. Study Participants

In total 10 subjects participated in this study: 5 healthy
controls and 5 subjects with Parkinsons disease (PD) ac-
cording to the consensus criteria of the German Society of
Neurology analogue to the National Institute of Neurological
Disorders and Stroke (NINDS) diagnostic criteria for PD.
Tab. I shows the patient characteristics. The study was ap-
proved by the ethics committee (Re.-No. 4208, 2010-21-04,
IRB, Medical Faculty, FAU Erlangen-Nuremberg, Germany)
and all participating subjects gave written informed consent.
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TABLE I
CHARACTERISTICS OF PATIENTS AND CONTROLS

Characteristic PD Patients
(n=5)

Controls
(n=5)

Sex (male:female) * 3 : 2 4 : 1
Age (y, mean ± SD) * 57.0 ± 16.3 27.6 ± 1.2
H&Y (mean ± SD) 1.8 ± 0.6 -
UPDRS motorscore (mean ± SD) 12.4 ± 7.6 -

* Significant difference in gender and age

B. Measurement System

EMG measurements were performed using Delsys Trigno
(Delsys Inc., Boston, MA). This system uses small wireless
EMG sensors with four silver bar electrodes and integrated
amplifier. The reusable sensors are directly attached to the
skin using double sided adhesive tape. This allows fast,
simple and hassle-free electrode placement, as no electrode
gel or wet electrodes are required. The integrated electrodes
reduce artifacts, which is especially important during dy-
namic movements like gait. Each sensor can also be used
as a 3-axis accelerometer, allowing synchronized recording
of EMG signals and inertial sensor data.

C. Electrode Placement

Trigno EMG electrodes were placed bilaterally on the
tibialis anterior (TA), gastrocnemius medialis (GM) and
gastrocnemius lateralis (GL) muscles according to SENIAM
guidelines. Skin was prepared using abrasive gel and cleaned
using isopropyl alcohol to lower skin impedance. Addition-
ally a Trigno Sensor was placed at each heel of the subject to
record accelerometer (ACC) data. In total 12 channels were
recorded: EMG-TA left/right, EMG-GM left/right, EMG-
GL left/right and ACC-X/Y/Z left/right. Recording was per-
formed with the Delsys EMGworks software using 4000 Hz
for the EMG channels and 296.3 Hz for the ACC channels.

D. Gait Tests

The Delsys EMGworks software was used to create the
measurement protocol, including a signal check and an
automatic labeling of all exercises. This allowed reliable
recording conditions throughout the study. The measurement
protocol consisted of a series of standardized gait tests, which
in part correspond to UPDRS Part III [2] and are similar to
tests used in previous studies [5], [6]:

• 10-meter walk: The subject walked 10 m four times at
a comfortable walking speed.

• Heel-toe tapping: While the subject was sitting, heel
and toes were tapped alternately on the floor for 30 s.

• Foot rotation: While the subject was sitting, a circling
movement using only the ankle joint was performed 5-
10 cm above the floor for 30 s.

• Seesaw: While the subject was standing and holding to
a handrail, plantar flexion (tiptoe) and dorsiflexion of
both foots were performed alternately for 30 s.

E. Filtering and Preprocessing

The collected data was detrended and filtered according
to SENIAM guidelines. EMG signals were filtered between
10 Hz and 500 Hz using 4th-order Butterworth filters. The
ACC data was low-pass filtered at 2 Hz using a 4th-order
Butterworth low pass filter. To allow easier processing, the
filtered ACC data was upsampled to the same sampling rate
as the EMG signals, i.e. 4000 Hz.

F. Automatic Step Segmentation

The recorded data was automatically split into single tests
by the recording software. All tests except the 10-meter walk
had a defined recording time of 30 s. From these only the
middle 15 s were extracted for further processing. This was
done to exclude possible artifacts at the start and end of the
exercise and to avoid negative effects due to fatigue.

The data from the 10-meter walk test was additionally
processed to automatically segment the continuous signal
into single steps. From this only the middle 10 steps of each
repetition were used for further processing. This was done to
have comparable input data for each subject, as this exercise
was performed at an individual walking speed.

Automatic step segmentation was performed separately
for each leg using the vertical ACC signal (ACC-Z). The
root-mean-square (RMS) energy of each ACC-Z signal was
computed over a sliding window of 125 ms width. The
approximate time of heel contact was then extracted by
applying peak detection using an empirically determined
threshold. Finally, the EMG signals of the corresponding leg
were segmented around the time of heel strike using a fixed
window of ± 300 ms.

After the segmentation step, each subject provided EMG
signals for a total of 40 steps á 600 ms from the 10-meter
walk and three sequences á 15 s from the other three tests.

G. Feature Extraction

All individual EMG signals from the previous step were
used to extract the following statistical features:

• FS1: Variance
• FS2: Skewness
• FS3: Kurtosis
• FS4: RMS Energy

Additionally, the following frequency features were used:

• FF1: Dominant Frequency
• FF2: Mean Frequency
• FF3: Median Frequency
• FF4: Total Power

For the 10-meter walk all steps of a single subject were
used to compute mean and standard deviation for each
feature, leading to 16 features for each muscle in this
test. Features from the other three tests were used directly,
resulting in only 8 features for each muscle in those tests.
In summary 2 ∗ 3 ∗ (16+ 8+ 8+8) features were extracted,
leading to a total of 240 features per subject.
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H. Feature Selection and Ranking

After the complete feature set was extracted, a forward
feature selection was performed [18]. This was done to
reduce the number of features and to evaluate which features
contributed most to classification accuracy.

The feature selection started out with an empty feature
set. In each step one additional feature was added and the
classifier was cross-validated on the new feature set. Only the
best feature was retained in each step and the process was
repeated until cross-validation accuracy did not improve.

The feature selection itself was performed in an additional
cross-validation loop to make it robust and to avoid overfit-
ting [19]. This did not lead to a single best feature set, but
to multiple feature sets. Feature ranking was performed by
counting how often a feature appeared in each feature set.

I. Classification

The resulting feature sets were combined into a feature
vector and used to train a Support Vector Machine (SVM)
classifier [18]. To avoid overfitting due to the small sample
size, only a linear kernel was used and the cost parameter
C was fixed to 1. Classification rate was estimated using the
leave-one-subject-out cross-validation method. Results were
used to calculate average sensitivity and specificity.

III. EVALUATION

A. Data Quality

Data quality of the recording setup was assessed by
computing the overall signal-to-noise-ratio (SNR), leading to
a SNR of 75.3 dB. Figure 1 shows an example EMG signal
collected from a patient with PD. Signal from the GM and
GL muscles was generally weaker than from the TA.

Fig. 1. Example EMG signal of the right tibialis anterior (TA, blue),
gastrocnemius medialis (GM, green) and gastrocnemius lateralis (GL, red)
during walking.

B. Usability

To assess usability, subjects were asked about their com-
fort during recording. They reported that the small wireless
sensors were not restricting their motion or interfering with
their gait. Testers were asked about the practical usability of
the recording setup in a clinical environment. They reported
that the system was easy to use with a total time of around
20-30 minutes per patient, including a setup time of 10-15
minutes. Electrode placement was much easier compared to
previously used wet electrodes and cables. The implemen-
tation of the whole measurement protocol in the recording
software decreased time required for a single recording.

Additionally, this increased compliance to the study protocol
and no incomplete datasets were recorded.

C. Automatic Step Segmentation

The simple step segmentation algorithm was evaluated by
visual inspection of the detected steps. A total number of
1233 steps were detected correctly during all recordings. 14
steps were not detected and 9 steps were detected while no
or only a partial step was present. Errors were mostly made
during turning (missed steps) or at the beginning or end of
the test (additional or incomplete steps). Overall the step
segmentation algorithm had a sensitivity of 98.9 % and a
specificity of 99.3 % when applied to our walking data.

D. Classification Accuracy

Classification accuracy was assed using the SVM classifier
after feature selection. Experiments were performed (1) using
only data from specific muscles, (2) using only data from
specific exercises and (3) on the whole data set. Table II
shows the results for each experiment.

TABLE II
CLASSIFICATION RESULTS FOR PD VS. CONTROL

Experiment Sensitivity Specificity Best Feature
only GM muscle 0.8 1.0 Mean Freq. GM
only GL muscle 0.8 0.8 Mean Freq. GL
only TA muscle 1.0 0.8 Kurtosis TA
only 10-meter walk 0.8 0.6 Kurtosis TA
only Heel-toe-tapping 0.8 0.6 Mean Freq. TA
only Foot rotation 1.0 0.8 Kurtosis TA
only Seesaw 0.8 0.8 Mean Freq. TA
All data 0.9 0.9 Kurtosis TA

E. Feature Ranking

The best ranking features during feature selection were
kurtosis and mean frequency of the TA muscle (Fig. 2), with
the difference in kurtosis beeing significant (p=0.013).
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Fig. 2. Comparison of the two best ranked features kurtosis and mean
frequency. The difference in kurtosis was significant (p=0.013).

IV. DISCUSSION

EMG during dynamic movements like gait is still barely
studied in PD. Main reasons for this are (1) the often
complicated data collection and (2) the lack of sophisticated
analysis algorithms to understand and interpret the signals.

The first important goal of this study was to setup an
easy to use recording system to reliably collect high quality
EMG data in a clinical environment. This was achieved by
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combining small wireless EMG sensors with a study protocol
that includes standardized gait tests. Evaluation showed that
the recorded EMG data had a high signal-to-noise-ratio
and that the electrodes were non-hindering for the subjects.
This allows collecting data during standard assessment in
outpatient centers or small clinics.

The second major goal of this work was to determine
whether the collected data is usable to build an automatic
classification system to discriminate between PD and con-
trols. For this an automated processing pipeline for step
segmentation, feature extraction and classification was build.

The evaluation of the step segmentation algorithm showed
that it can extract almost all steps correctly. Features were
not dependent on an exact time of heel strike, so a rough
determination proved sufficient. Missed steps occurred only
during turning, however this did not cause a problem as only
straight steps were needed. Additional steps at the start or
end of an exercise posed no problem, as only the middle
steps were needed. Overall the step segmentation proved to
be very reliable for the 10-meter walk exercise.

Feature extraction was performed using statistical and
frequency features on the unnormalized EMG data of each
test or step. Results comparing different muscles indicate that
one muscle alone can already provide sufficient information
for classification. This suggests that PD affects all EMG
signals of one side in the same manner, but further work
is needed to support this. Comparison of the different gait
tests showed that seesaw and foot rotation had better results
than others, but no clear trend could be observed. So far,
it is also not clear if step-wise feature extraction improves
results. Further analysis with biomechanical gait parameters
or time-frequency features like wavelets [15] will clarify this.

Overall classification accuracy was high with sensitivity
and specificity at 0.9 when comparing patients with PD to
healthy controls. Feature ranking revealed kurtosis as statis-
tically significant feature for the small population, which is
consistent with previous results from upper extremities [13].

While the current results must be verified on on a larger
age-matched population, they already show that automatic
identification of suitable non-linear statistical features is of
high value for the discrimination of PD and healthy controls.

V. CONCLUSION

This paper presented a study design and classification
algorithm to distinguish PD from healthy controls using
EMG signals during standardized gait tests. We were able to
show that the study design is valid and that the collected data
is usable to perform successful classification of PD and con-
trols. Additionally we showed that automatic feature ranking
can reveal statistically significant parameters. Evaluation on
a bigger and age-matched population is on-going.

In the future, mobile sensors combined with pattern recog-
nition algorithms will lead to an automatic and objective as-
sessment of myoelectric control during gait and will provide
valuable tools for diagnosis and staging tools of PD.
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