
  

 

Abstract— Automatic quantification of cell nuclei in 

immunostained images is highly desired by pathologists in 

diagnosis. In this paper, we present a new approach for the 

segmentation of severely clustered overlapping nuclei. The 

proposed approach first involves applying a combined global 

and local threshold method to extract foreground regions. In 

order to segment clustered overlapping nuclei in the foreground 

regions, seed markers are obtained by utilizing morphological 

filtering and intensity based region growing. Seeded watershed 

is then applied and clustered nuclei are separated. As pixels 

corresponding to stained cellular cytoplasm can be falsely 

identified as belonging to nuclei, a post processing step 

identifying positive nuclei pixels is added to eliminate these false 

pixels. This new approach has been tested on a set of manually 

labeled Tissue Microarray (TMA) and Whole Slide Images 

(WSI) colorectal cancers stained for the biomarker P53. 

Experimental results show that it outperformed currently 

available state of the art methods in nuclei segmentation. 

 

I. INTRODUCTION 

Immunohistochemistry (IHC) is a technique used by 
Pathologists to test for the presence of clinically important 
biomarkers in tumours.  The management and prognosis of a 
patient may depend on the level of expression of the 
biomarker. Currently, interpretation of IHC is performed by 
experienced pathologists who manually quantify the 
biomarker expression. However, manually counting is a time 
consuming and laborious process and in most cases, 
biomarkers are assessed using semi-quantification methods. 
These yield poorly reproducible results [1] and thus automated 
quantification method, which could consistently quantify 
biomarkers in an objective way, would be desirable.   

Many biomarkers are expressed in the nuclei of cells and 
thus nuclei segmentation is an important step in the automated 
analysis of IHC. A number of studies have been performed in 
the automated analysis of nuclei in different kinds of IHC 
images. Datar et al. [2] used an unsupervised clustering 
framework for nuclei segmentation in prostate cancer. Jung et 
al. [3] presented an unsupervised Bayesian classification 
scheme for nuclei segmentation on mammary invasive ductal 
carcinomas. Bergeest & Rohr [4] introduced an active contour 
and level set based global optimization approach for nucleus 
segmentation in fluorescence images. Very recently, Qi et. al. 
[5] introduced an algorithm used a single-path voting followed 
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by mean-shift clustering and level set algorithm to separate 
overlapping cells in breast cancer. 

Although these methods produced good results, they 
became inaccurate when faced with overlapping or densely 
clustered nuclei. Resolving this problem is still a very 
challenging task and it arises due to a number of reasons. 
Firstly, the tissue sections and colour stains are usually 
unevenly prepared which makes it difficult to separate the 
nuclei from the cluttered background. Secondly, there always 
exists a large intensity variation in the nuclei, making it easily 
to be over-segmented. Thirdly, images of histological sections 
represent a 2-dimensional view of a 3-dimensional entity. 
Thus individual nuclei, although in different planes of the 
section, may appear to be aligned and overlapping when 
viewed from one perspective. This will cause 
under-segmentation.  

The most common approach to separating overlapped 
nuclei on IHC images is the watershed algorithm [6]. The 
traditional watershed algorithm considers regional minimum 
as starting points may yield over-segmentation. Instead of 
choosing regional minimum, some authors [7, 8] detected the 
seeds first and used those seeds as starting points to perform 
the watershed algorithm. The success of these approaches 
highly relies upon the accurate detection of these seed points.  

To efficiently detect those seed points, Parvin et. al. [9] 
proposed an iterative voting method which was used to detect 
the centers of overlapping cells. Al-Kofahi et. al. [10] 
presented a distance constrained LoG filtering method to 
detect the seeds. Both of these two methods produced good 
results. However, as will be shown in the experimental 
section, these two methods could fail to detect seeds on 
heavily clustered nuclei in regions with poorly defined 
borders. 

In this paper, we present a multistage watershed based 
approach for segmenting severely clustered and overlapping 
nuclei cells while simultaneously trying to reduce both 
over-segmentation and under-segmentation. We firstly 
propose a novel method for detecting the initial seeds by 
utilizing morphological features. Based on these detected 
seeds, we then present a novel intensity based region growing 
step coupled with the watershed algorithm to perform the final 
nuclei segmentation. Our approach is easy to implement, 
relatively lightweight, but still very efficient. Experiments on 
a new dataset have shown that our approach outperforms 
several state-of-art methods in nuclei segmentation. 

II. MATERIALS & METHOD 

All experimental work was performed on images of human 
colorectal cancers which had been stained for the biomarker 
P53.  This is an important marker of mutation of the TP53 
gene and is expressed predominantly in the nuclei  

Segmenting Overlapping Cell Nuclei In Digital Histopathology 

Images 

Jie Shu, Hao Fu, Guoping Qiu, Philip Kaye and Mohammad Ilyas 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5445



  

 

Figure 1.  Workflow of the proposed method 

of the cells. The IHC was performed using 
Diaminobenzidine (DAB) as the chromogen. An example of 
these images is shown in Fig. 2, where the nuclei are severely 
clustered and there is a large shape variation among different 
nuclei 

Our proposed approach consists of the following three 
steps. Firstly, the foreground regions which might contain the 
nuclei are extracted. Secondly, a new seeded watershed 
algorithm followed by a region growing step is applied to the 
foreground regions. Thirdly, redundant pixels are eliminated 
and an ellipse is fit to each segmented nuclei. The whole 
procedure is also illustrated in Fig. 1. 

A.  Foreground & Background Classification  

In general, the intensity of foreground, i.e. pixels 
belonging to the nuclei, can be easily distinguished from the 
background by global threshold method such as Isodata [11]. 
However, in DAB stained TMA images, the nuclei boundary 
could be easily misclassified by the global threshold method 
as the mean intensity levels vary across the background of the 
entire image. Therefore, global threshold method cannot 
provide satisfactory results, as shown in Fig. 2(b). 

Instead, we used a combination of global threshold and 
local threshold to tackle this problem. Local thresholding 
allows an adaptive threshold value to be applied in a local 
region and can efficiently counter the issue of intensity 
variations across the background [12]. The local threshold is 
applied on the pixels which are classified as foreground by 
global threshold method. We used the same automatic 
thresholding method [11] for global and local thresholding. 

The size of the local thresholding regions (window) and 
the step-size of the moving window will affect the accuracy of 
local thresholding results. In order to classify the foreground 
from the background in a local window, the size of this 
window should be larger than the size of nuclei in the image. 
Smaller windows would falsely eliminate the pixels belonging 
to the nuclei and lead to over-segmentation, while larger 
windows would cause under-segmentation. Therefore, it is 
important to set an appropriate size for the local window. The 
results obtained by different window sizes are shown in Fig. 
3(b)-(d). In our experiments, we empirically set it to 50×50.  

The horizontal distance that the window moves is 
determined by the size of the window, which means 

 ≤d ≤ s 

     where d is the horizontal moving distance, and s is the size 
of the moving window. As shown in Fig. 3, nuclei pixels are 
largely eliminated when the moving distance is small, 
especially when d = 1. Although smaller moving 

 

Figure 2.  Watershed on extracted foreground regions. ((a) original image. 
(b) watershed performed on the global thresholded images. (c) watershed 

performed on our combined global and local thresholded image.) 

 

Figure 3.  Local window movement. ((a) original image. (b-d) different 

window sizes, 10×10, 30×30, 50×50. (e-h) different moving distances per 
iteration, the shown moving distances include 1 pixel, 5 pixels, 15 pixels and 

25 pixels.) 

distances (from 1 pixel to 20 pixels) outline the boundary 
of clustered nuclei very well, weak stained object (circled 
area) is missed. In all our experiments, we empirically set the 
moving distance to 25 pixels. 

B. Watershed Based On Seeds 

Although the combined local threshold and global 
threshold can clearly detect the boundary of the clustered 
nuclei, the largely eliminated intra pixels may lead to 
over-segmentation. Filling the holes offers the potential to 
minimize the over-segmentation effect. Meanwhile, it may 
also fill the inter nuclei gaps which may lead to 
under-segmentation. Thus, the normal watershed may not 
produce the desired results. Therefore, we prefer to use seeds 
controlled watershed [7, 8] to segment the clustered nuclei. 

Different from previous seeds controlled watershed [7, 8], 
the seeds used in our approach are obtained through the 
following two steps. Firstly, two binary masks, mask1 and 
mask2, are created. The binary mask1 is obtained by the 
global threshold [11] while the binary mask2 is obtained by 
the combined global and local threshold method described in 
section 2.A. The mask2 is then transformed to the Euclidian 
distance map (EDM) [7]. The initial seeds are obtained by 
finding the Ultimate Eroded Points (UEP) from this 
transformed mask, as shown in Fig. 4(a). Watershed splits the 
overlapped nuclei areas into smaller particles. Instead of 
focusing on the segmentation accuracy, clustered areas are 
separated in an over segmentation fashion. Larger sizes of 
particles are more likely to belong to the nuclei objects, while 
smaller particles may belong to noise. The removal of noisy 
particles depends on the mean size range of the nuclei. 
However, the sizes of nuclei vary across different images, 
even within a single image. Therefore, a minimum size 
constraint should be added to prevent over elimination. In the 
removal process, particles whose sizes are smaller than the 
mean size or the minimum size constraint are regarded as 
noise, as shown in Fig. 4(c). 
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Figure 4.  Region growing and nuclei segmentation. ((a) original image, 

red points in (a) are initial seeds obtained from UEP. (b) the combined local 

and global thresholded results. (c) small particles in (b) are removed 
according to the mean nuclei size and minimum size constraint. (d) seeds 

used for region growing are highlighted in the center of each particle, and 

the surrounded red pixels are the pixels will be grown. (e) the neck pixels are 
set to be gray in the region growing process. (f) final segmentation results by 

watershed. (g) the contour of each nuclei based on (f). (h) ellipses 

approximation of final segmentation results. 

 

Figure 5.  Post processing. ((a) & (e) original image. (b) over-segmented 
nuclei in the initial segmentation. (c) the merged nuclei after region growing 

process. (d) final segmentation. (f) falsely identified nuclei before post 

processing. (g) false positive nuclei are eliminated after post processing.) 

Secondly, the remaining particles in the filtered mask2 are 
regarded as seeds for the region growing as shown in Fig. 4(d). 
This region growing process which is based on mask1, aims to 
retrieve the missed nuclei which are falsely eliminated in 
mask2 for their weak stain.  

This region growing process is similar to the watershed 
algorithm which floods the water from catchment basins (the 
seeds) to the dams (the separation lines) where the water 
comes from different basins meet each other. Different from 
classical watershed, the cutting “necks” between nuclei are 
added instead of creating separation dams due to the previous 
over-segmentation. The “necks” are generated in favor of 
measuring the intensity of the dam pixels whose intensity is 
larger than the mean intensity value of that growing nucleus. 
Adding the “necks” offer watershed the ability to separate the 
clusters and the potential to merge the over-segmented nuclei 
as well, see Fig. 5(a)-(d). Based on this neck added binary 
mask2, the final seeds can be extracted by finding the regional 
minimal points of EDM. The final segmentation results are 
generated by the seeds controlled watershed, as illustrated in 
Fig. 4(f) and (g). 

C. Post Processing 

As shown in Fig. 5(f), the segmentation results contain 
noise pixels inside some particles. These noise pixels are 
usually the stained cytoplasm pixels surround the nuclei. 

TABLE I.  MEASUREMENT OF SEGMENTATION RESULTS AGAINST 

MANUALLY LABELED GROUND TRUTH. 

AS=Auto Segmentation, the number of segmented nuclei result. CD=Correct Detection. 
OS=Over Segmentation. US=Under Segmentation. Miss=Miss segmented nuclei. FP=False Positive. 
AR=Average accuracy Rate, the average correct detection rate. OR=Overall accuracy Rate, 
OR=CD/Ground truth. 

Therefore, we need a post processing step to eliminate the 
noise. To achieve this, each particle is examined separately 
and an intensity histogram is generated for those pixels inside 
the particle. An auto threshold method [11] is performed on 
the intensity histogram. Pixels in each particle are considered 
to be nuclei pixels when the intensity of them is lower than the 
local threshold. Finally, an ellipse is fitted to those nuclei 
pixels. 

III. EXPERIMENTAL RESULTS 

The DAB stained samples dataset includes 52 images of 
200x200 pixels. These images contain heavily clustered nuclei 
areas which are cut from 14 TMA images and 4 WSI of 
colorectal cancer. We have manually labeled 1265 nuclei in 
this dataset. Parameters used in this paper are: window size is 
50×50 pixels, moving distance is 25 pixels, and the minimum 
size constraint is 200 pixels. These parameters are empirically 
decided, although a systemic method to obtain these would be 
highly desirable, it is still a very challenging task (all data and 
ImageJ plugin of our method are available at 
http://www.viplab.cs.nott.ac.uk/download/Nott-Nuclei.html).  

We have compared our method with classical watershed 
performed on global thresholded [11] image and extended 
minima transformed image (E-min) [13]. Besides, we have 
also tested iterative voting method presented in [9] by using 
their publicly available software. The method developed by 
Al-Kofahi et. al. [10] which has been applied as a toolkit in 
FARSIGHT [14] has also been compared. For the 
performance measure, we have adopted different evaluation 
criterions including correct detection, over segmentation, 
under segmentation, missing nuclei and false positive. The 
correct detection means the number of correctly segmented 
nuclei. The missed nuclei number is calculated as the number 
of nuclei included in both the under-segmented areas and the 
foreground areas. False positive nuclei number is calculated as 
the number of false positive nuclei in over-segmentation areas. 
Our results together with those obtained by the previous 
methods are compared in Table 1.  

From table 1, we can see that using the global threshold 
generates more under segmentation and less correct detection. 
Extended minimal reduces the under segmentation, however, 
many unevenly stained particles were eliminated and the 
correct detection number was still low. Iterative voting 
method locates the center of nuclei based on the border of each 
nucleus. The weak borders between nuclei in the clustered 
areas made this method susceptible to under-segmentation. 
The method used in [10] leads to larger over-segmentation rate 
than the others due to the highly textured  
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Figure 6.  Segmentation results. (In row (a) original images from 1-4. (b) 
manually labeled ground truth. (c) watershed on global threshold[11]. (d) 

watershed on extended minima transform [13]. (e)iterative voting [9]. (f) 

method in [10].) 

Figure 7.  Segmentation results. (our proposed method.) 

intra chromatin of nucleus and the variations of nuclei 
structures. Our method balanced the over and under 
segmentation, significantly increased correct detection and 
reduced missed detection. Some segmentation results are 
shown in Fig. 6 and Fig.7. 

IV. CONCLUSION 

Quantification of positive nuclei is routinely used in 
diagnostic pathology for determining individual therapy 
strategy. In order to reduce the subjective bias of 
quantification, objective method is of primary importance. In 
this paper, we have developed an automated method for 
segmenting clustered nuclei in colorectal cancer. Experiments 
on a large dataset show that the new method works very well 
and outperforms several state of the art techniques. As in 
similar techniques, there are several parameters that need to be 
determined empirically. Our future work will investigate 
systematic methods to determine these parameters. 
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