
  

  

Abstract— In this study, we introduce a real-time method for 
tongue movement estimation based on the analysis of the surface 
electromyography (EMG) signals from the suprahyoid muscles, 
which usual function is to open the mouth and to control the 
position of the hyoid, the base of the tongue. Nine surface 
electrodes were affixed to the underside of the jaw and their 
signals were processed via multi-channel EMG system. The 
features of the EMG signals were extracted by using a root 
mean square (RMS) method. The dimension of the variables 
was reduced additionally from 108 to 10 by applying the 
Principal Component Analysis (PCA). The feature quantities of 
the reduced dimension set were associated with the tongue 
movements by using an artificial neural network. Results 
showed that the proposed method allows precise estimation of 
the tongue movements. For the test data set, the identification 
rate was greater than 97 % and the response time was less than 
0.7 s. The proposed method could be implemented to facilitate 
novel approaches for alternative communication and control of 
assistive technology for supporting the independent living of 
people with severe quadriplegia. 

I. INTRODUCTION 

The motor function of the tongue often remains intact even 
in the cases of severe movement paralysis. Therefore, tongue 
movements offer a great potential for the design of novel 
highly-efficient human-machine interfaces for alternative 
communication and control. Numerous approaches for 
deriving control signals from intentional tongue motions have 
been proposed: detection of tongue position via measurement 
of the magnetic fields of a permanent magnet attached to the 
tongue [1,2]; detection of lingual proximity by light-emitting 
diodes and photodiodes placed on an artificial palate plate 
[3,4]; measurement of the force applied by the tongue to a 
force sensor array mounted on an artificial palate plate [5,6]; 
and direct tongue manipulation of a joystick or switch inserted 
into the oral cavity [7]. However, such methods require 
insertion of a measuring instrument into the oral cavity which 
entails certain risks and discomfort to the patient such as 
increased psychological stress, oral health problems, 
obstruction of speaking and drinking, suffocation by 
accidental ingestion, electric shock, battery fluid leakage, etc.   
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Surface electromyography (EMG) signals are used widely 
for pattern recognition of human motions [8-12]. The same 
approach can be applied to the estimation of tongue 
movements without inserting a measuring instrument into the 
oral cavity. Tongue motions result from the contractions of the 
lingual muscles. However, the detection of the EMG activities 
of the lingual muscles requires the installation of surface 
electrodes or needle electrodes within the oral cavity which 
may cause serious difficulties for the practical application of 
such approach. That is why we have focused on the surface 
EMG signals measured at the underside of the jaw. Such 
electromyogram contains signal components that are related to 
the activity of the suprahyoid muscles whose function is to 
open the mouth and to control the position of the hyoid (the 
base of the tongue) when the tongue moves. In our previous 
studies, we have reported on the results from a feasibility 
study on the estimation of the tongue movement from the 
EMG signals at the underside of the jaw without using the 
EMG signals of the lingual muscles [13, 14]. 

In this paper, we propose a novel method for real-time 
estimation of tongue movement based on principal component 
analysis (PCA) and artificial neural networks and evaluate the 
effectiveness of the proposed method in terms of precision and 
speed. 

II. REAL-TIME ESTIMATION OF TONGUE MOVEMENT 

A.  Mechanism of tongue movement 
Tongue movements are produced by the coordinated 

actions of the lingual muscles that include the intrinsic 
muscles of the tongue (superior longitudinal muscle of tongue, 
inferior longitudinal muscle of tongue, transverse muscle of 
the tongue, vertical muscle of tongue) which control the 
tongue shape and the direction of tongue tip, and extrinsic 
muscles of the tongue (genioglossus muscle, styloglossus 
muscle, hyoglossus muscle, palatoglossus muscle) which 
control the tongue position in anterior direction and move the 
tongue downward and backward (Fig. 1) [15]. The detection 
of the EMG activities of the lingual muscles requires the 
installation of surface electrodes or needle electrodes within 
the oral cavity. That is why we decided to focus on the EMG 
signals of the suprahyoid muscles (digastric muscle, 
stylohyoid muscle, mylohyoid muscle, and geniohyoid 
muscle) which are observable at the underside of the jaw. The 
primary function of the suprahyoid muscles is to open the 
mouth or to initiate the swallowing movements. However, 
some of these muscles also support the hyoid (the base of the 
tongue) during the tongue movement and the EMG signals 
measured at the underside of the jaw change when the tongue 
position changes. That fact can be used for estimation of 
tongue movements from the EMG signals. The mylohyoid 
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Figure 1.   Lingual muscles and hyoid muscles. 

muscle supports the hyoid when the tongue moves in a lateral 
direction. The geniohyoid muscle supports the hyoid when the 
tongue moves in anterior direction, and the hyoid is supported 
by the stylohyoid muscle when the tongue is crimped to the 
palate. The coordinated voluntary tongue movements cause 
contractions of the suprahyoid muscles that can be detected in 
the surface EMG and can be utilized as control commands for 
assistive devices. 

B.  Estimation algorithm 
The EMG signal processing is explained below (see also 

Fig. 2). 

1. EMG signals of the suprahyoid muscles were measured at 
nine points at the underside of the jaw by monopolar 
induction. 

2. The EMG potential from neighboring muscles (crosstalk) 
was analyzed by calculation of the potential differences 
between every two electrodes for all combinations of the 
electrode signals (9C2 = 36 signals). 

3. To extract the feature quantities, the root mean square 
(RMS) of all 36 signals were calculated as per eq. (1). The 
smoothening numbers n were set sequentially to 100, 300 
and 500. 

∑
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4. This way, we composed a feature quantity Y(t) = [RMS100, 
RMS300, RMS500]t. Y(t) is 108-dimensional quantity (36 
channels × 3 values for n). 

5. The 108-dimensional feature quantity Y(t) was reduced to 
a new, 10-dimensional quantity Z(t) by using PCA. 

 

Figure 2.   Tongue movement estimation algorithm. 

 

 
Figure 3.   Electrodes for EMG measurement. 

 
6. The input signals to the neural network were determined 

from the last three sequential samples F(t) = [Z(t), Z(t-1), 
Z(t-2)]t. This way, the feature vectors took into 
consideration not only the current sample but also the 
previous two samples. 

7. The signals for teaching the neural network on the 
identifying tongue movements were generated by 
summation of RMS signals from all 32-channels and 
threshold processing. 

8. The tongue movements were linked with the feature vector 
F(t) by adjustment of the connection weights of the 
neurons in the network via  using a backpropagation 
learning algorithm. 

9. The output signals (estimation) from the neural network 
were binarized by threshold processing.  

10. Finally, the tongue movement was determined by applying 
the majority rule among k recent estimations. 

III. EXPERIMENT AND ANALYSIS 

A.  Experimental condition 
The subjects of this experiment were five adult men with 

normal tongue function (21.8 ± 0.8 years old, 169.0 ± 4.8 cm, 
63.0 ± 7.0 kg, mean ± SD). We analyzed the surface EMG 
from nine surface electrodes installed at 20 mm intervals on 
the underside of the jaw. The indifferent electrode was 
attached to the ear lobe (Fig. 3). We used disposable 
electrodes (SMP-300; Mets Inc.) that were connected via 
EMG leads (BR-331S; Nihon Kohden Corp.) to a 
bio-amplifier (NB6101HS; Nabtesco Corp.) the which gain of 
which was set to 1,950. The bio-amplifier’s cut-off 
frequencies of the high-pass filter and the low-pass filter were 
set to 2.3 Hz and 320 Hz respectively.   

EMG signals were measured for three voluntary tongue 
movements. Participants were asked to push with the tongue 
sequentially on the right, on the left, and on the front side of 
the mouth cavity. Apart from the voluntary tongue movements, 

(a) Frontal plane 

Geniohyoid muscle Stylohyoid muscle 
Posterior belly of  
digastric muscle 

Mylohyoid muscle 

Anterior belly of  
digastric muscle 

Hyoid 

Lower jaw 

(b) Sagittal plane 

Geniohyoid muscle 
Mylohyoid muscle Hyoid 

Hyoglossus muscle 

Styloglossus muscle 

Palatoglossus muscle 

Genioglossus muscle 

Intrinsic muscle of tongue 

Anterior belly of  
digastric muscle 

(a) Frontal plane                                 (b) Sagittal plane 

4606



  

the participants were also required to perform one action of 
saliva swallowing. These four measurements constituted one 
set of operation. Each subject was asked to perform eight sets 
of tasks. Each action needed to be completed in one second. 
Subjects were asked to rest for one second before they start the 
next action. The EMG signals of the suprahyoid muscles were 
digitalized at sampling frequency of 2,000 Hz through an 
analog-to-digital converter (AIO-163202FX-USB; Contec Co. 
Ltd.). 

B. Condition of learning and estimation 
Four of these eight sets of data were used for the learning 

processes of the neural networks. The remaining four sets 
were used for estimation of the tongue movements. The neural 
network was constructed by using Matlab (Neural Network 
Toolbox; The MathWorks Inc.). The number of inner layers 
was 15. The frequency of learning was 5,000 times. The 
estimation precision was tested for the frame shift period d of 
0.5, 2.5, 5.0, 10, and 25 ms.  The numbers of votes for majority 
rule of k were 1, 5, 10, 20, and 50.  

In addition, we explored how Y(t) influences the accuracy 
of the tongue movement estimation algorithm. For that 
purpose, we studied the estimation accuracy of the proposed 
algorithm for four values of Y(t), namely: 

Y(t)=RMS100 

Y(t)=RMS300 

Y(t)=RMS500 

Y(t)=[RMS100, RMS300, RMS500] t. 

The results are shown in Table 1. 

C. Index of evaluation 
We used the following two indices to evaluate the 

precision and the speed of estimation of the developed 
algorithm, as follows. 

i) Rate of correct identification of movement (Rate of correct 
identification RCI) 

CI 100[%]= ×
Number of  correct identificationsR
Total number of  identifications

 (2) 

ii) Time from the start of the movement until the 
identification (Response time tr) 

IV. RESULTS AND DISCUSSION 
The average rates of correct identification and response 

times for all five subjects are shown in Fig. 4(a) and 4(b) 
respectively. Figure 5 presents the results of the estimation by 
the proposed algorithm for conditions A, B and C in Fig. 4. 
The increased frame shift period d and the increased number 
of votes for the majority rule of k indicate that the rate of 
correct identification has been improved. As shown in the 
same figure, the initial rates of correct identification of 33.8% 
in (C) (d = 0.5, k = 1.5), were improved to 97.5% in (A) (d = 
25, k = 50). However, the response time has increased from 
0.04 s to 0.69 s, suggesting a tradeoff relation. 

The effect of the frame shift period d was discussed 
previously by Kelvin et al. [16]. Our experiments also  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Estimation results of tongue movement  (A: d = 25 ms, k = 50; B: d 
= 1.0 ms, k = 20; C: d = 0.5 ms, k = 10). 

 

confirmed that estimation accuracy can be improved by 
choosing a long shift period. Although an increased number of 
votes for rule of majority k prolongs the response time from 
the start of movement to the completion of the estimation, it 
stabilizes the output signal and improves the estimation 
accuracy (Fig. 4). 

Table 1 presents a relation between feature quantity Y(t) 
and accuracy of estimation (frame shift period d is 25 ms, and 
the numbers of votes for majority rule of k is 50). Results also 
show that the accuracy of estimation for RMS500 is higher than 
the accuracy of the procedure when Y(t) = RMS100 or Y(t) = 
RMS300 was used which suggests the trend that the greater the 
number of samplings leads to a higher the accuracy of 
estimation. In addition, the estimation by all three RMSs Y(t) = 
[RMS100, RMS300, RMS500]t provided the best accuracy of 
estimation, with identification rate 98.8 ± 2.8 % and response 
time of 0.67 ± 0.09 s. 
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Figure 5.   Effects of frame period d and number of votes k on estimation 
precision (A: d = 25 ms, k = 50; B: d = 1.0 ms, k = 20; C: d = 0.5 ms, k = 10). 

 
Table 1   Effects of feature value on estimation precision. 

Y(t) Correct identification rate [%] Response time [s] 

RMS100 93.8 ± 4.4 0.75 ± 0.10 

RMS300 93.8 ± 6.3 0.70 ± 0.10 

RMS500 96.3 ± 3.4 0.67 ± 0.12 

All 98.8 ± 2.8 0.67 ± 0.09 
 

RMS processing has the same effect as a low pass filter, 
where the degree of smoothening was determined by the 
number of samples n. By defining a large number of signal 
components as feature quantities of the EMG signals, we can 
attain high accuracy of estimation of the tongue motions. 

Results showed that the initially obtained 108-dimensional 
feature quantity contained signal components that do not 
contribute to the accuracy of estimation but unnecessarily 
increase the amount of calculations. Therefore, to reduce the 
number of the feature quantity and to ignore the components 
that do not contribute to the estimation accuracy, we applied 
PCA to the input signal of the neural network. Although the 
average response time for estimation of the tongue movements 
is greater than the response time of some other human motions 
(which is approximately 0.2 s), the accuracy and the speed of 
recognition of the tongue movements are sufficient for most 
cases of control of assistive devices by people with severe 
disabilities. In our future work, we intend to examine the 
response time and the accuracy of user’s commands derived 
by the procedure presented herein in tasks for tongue control 
of assistive devices.  

V. CONCLUSION 
We have proposed a novel method for estimation of the 

voluntary movements of tongue in real-time from surface 
EMG signals of suprahyoid muscles observed at the underside 
of the jaw that minimizes the  signal artifacts due to saliva 
swallowing. Then we conducted a test to confirm that the 
proposed method allows precise estimation of the tongue 
motions. Test results showed identification rate greater than 
97 %, and response time of less than 0.7 s. It is expected that 
the proposed method could be used for the design of novel 
algorithms that can be applied to the operation of electric 
wheelchairs and computers for supporting the independent 

living of persons with movement disabilities and elderly 
people in the future. 
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