
  

 

Abstract—Epilepsy is one of the most prevalent neurological 
disorders among children. The study of surface EEG signals in 
patients with epilepsy by techniques based on symbolic 
dynamics can provide new insights into the epileptogenic 
process and may have considerable utility in the diagnosis and 
treatment of epilepsy. The goal of this work was to find 
patterns from a methodology based on symbolic dynamics to 
characterize seizures on surface EEG in pediatric patients with 
intractable epilepsy. A total of 76 seizures were analyzed by 
their pre-ictal, ictal and post-ictal phases. An analytic signal 
envelope algorithm was applied to each EEG segment and its 
performance was evaluated. Several variables were defined 
from the distribution of words constructed on the EEG 
transformed into symbols. The results showed strong evidences 
of detectable non-linear changes in the EEG dynamics from 
pre-ictal to ictal phase and from ictal to post-ictal phase, with 
an accuracy higher than 70%. 

I. INTRODUCTION 
Epilepsy is responsible for high levels of suffering, 

affecting more than 50 million people worldwide, thus 
making it an important public health problem. It is a chronic 
disorder of the central nervous system that predisposes 
individuals to episodic interruptions of cerebral electrical 
activities recurrent referred to as seizures. Sufferers can be 
of all ages, but epilepsy especially affects children, 
adolescents and the aged. 

The surface electroencephalogram (EEG) remains the 
most useful and cost effective tool in the diagnosis of 
epilepsy. Unfortunately, the occurrence of an epileptic 
seizure is not predictable and its process is not completely 
understood. In this way, diagnostic evaluations of EEG 
recordings of patients are necessary for better understanding 
the process leading to the seizure generation. Also, 
automated methods are necessary for analysis of epilepsy 
events because the EEG visual inspection results time 
intensive.  
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Investigations have confirmed that the transitions in and 
out of an abnormal ictal state are not a random process; 
instead they are dynamical transitions [1]. During the 
transitions of a seizure, several features are traditionally 
evaluated by describing the static behavior of the signals [2] 
within a short time interval, such as signal energy or 
frequency changes. However, since EEG signal exhibits 
complex behavior with nonlinear dynamic properties, the 
analysis of these signals with techniques that measure the 
chaoticity can improve the accuracy of the seizure event 
detections. Iasemidis et al. [3, 4] based their first studies on 
the temporal evolution of the short-term largest Lyapunov 
exponent for patients with temporal lobe epilepsy. The 
results showed that the EEG activity becomes less chaotic as 
the seizure approaches and provided evidences to the 
hypothesis of a route to seizure, a more order state of the 
brain. The feasibility of using trends in Kolmogorov entropy 
to anticipate seizures in pediatric patients with intractable 
epilepsy was demonstrated in [5]. It was concluded that the 
Kolmogorov entropy was as effective as the correlation 
dimension in anticipating seizures [2, 5]. 

In this sense, our analysis will address the quantification 
of EEG of intractable epilepsy in pediatric patients by the 
methodology of symbolic dynamics (SD). This methodology 
has been selected for this study since it is able to suit for the 
duration variability of the time series that last from seconds 
up to several minutes and proves to be adequate to describe 
complex and nonlinear systems [6-8]. The selection of the 
critical parameters and variables involved in this 
methodology will be carefully determined to better 
characterize state transitions of the system over time. 

II. MATERIAL AND METHODS 

A. Analyzed EEG Data and Preprocessing 
The analyzed EEG database belongs to PhysioBank, a 

collection of well-characterized biomedical signals, 
containing validated seizure references [9]. For the present 
study, the selected database consists of surface EEG 
recordings from pediatric subjects with intractable seizures 
[10] ranging in age from 0 and 10 years. A total of 11 
patients (2 males and 9 females) have been analyzed.  

All EEG signals, with a sampling rate of 256 Hz and 16-
bit resolution, were down sampled at 128 Hz. Channel CZ-
PZ was selected for obtaining the EEG signal patterns, since 
midline placements are useful for the detection of residual 
low-voltage physiologic activity and are relatively free from 
artifacts [11]. In accordance with the minimum seizure 
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duration of the EEG signals, segments of N = 800 samples 
were selected before (pre), during and after (post) ictal (I) 
phases. Moreover, the selected segments were not 
overlapped and always a gap of at least 5 seconds was 
considered between pre-ictal and ictal and also between ictal 
and post-ictal, in order to avoid the segments to be part of 
the ictal phase. In this way, three segments were selected for 
each seizure event, and a total of 76 seizures were analyzed. 

A high-pass FIR filter of 480th order with normalized 
cut-off frequency of 0.4 Hz was applied. Then, a filter based 
on analytic signal envelope (ASEF) [12] was applied to each 
EEG segment. This filter decreases the intensity of the peaks 
of the signal but keeps the frequency information. The EEG 
signal segments were analyzed with and without ASEF 
filtering. Moreover, each selected segment was filtered into 
the main EEG frequency bands: , <4 Hz; , 4-8 Hz; α, 8-12 
Hz; and , >12 Hz. Also, the EEG in the total (tot) frequency 
band was considered in this study. 

B. Time and Frequency Domain Analysis 
Traditional variables of time and frequency domain 

analysis were calculated for each EEG segment. In this way, 
the standard deviation (STD) of each EEG segment and its 
power spectral density (PSD) were evaluated.  

C. Symbolic Dynamics Analysis 
The non-linear EEG dynamics were analyzed by means 

of symbolic dynamics. Each EEG segment was transformed 
into four symbols from a given alphabet [6], in order to 
preserve the essential and robust properties of the dynamics 
in the EEG signal. Equation (1) indicates the signal 
transformation into four non-equidistant levels, where 
EEGm(i) is the EEG(i) series after adding the mean value of 
its amplitude range.  

 

 

 
 
(1) 
 
 
 

 
where  is the mean value of EEGm(i). 

Then, a new series Si was obtained for each EEG 
segment, where i=1, 2, 3, …, N samples. The parameter a 
was set to {0.01, 0.025, 0.05, 0.0625, 0.075, 0.0875, 0.1, 
0.125} in order to match the standard deviation of the 
EEG(i) series. From the symbol string Si, M=64 word types 

 {000, 001, 002, ..., 331, 332, 333} consisting of three 
successive symbols with an overlap of 2 symbols were 
defined.  

Five types of variables based on the distribution of words 
 were estimated: , occurrence probability of 

each one of the word types; fw(THf), number of forbidden 
words whose probability of occurrence is lower 
than a probability threshold THf={0.01, 0.005, 0.001, 
0.0005}; pw(THp), number of words whose probability of 
occurrence  is higher than a probability threshold 
THp ={0.025, 0.05, 0.1, 0.2, 0.3, 0.5}; , Shannon entropy 

(2); , Rényi entropy (3) with q = {0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.5, 2, 2.5, 3}. 

 
 
(2) 

 

 
 
(3) 

This procedure was applied to the pre-ictal, post-ictal and 
ictal segments. 

D. Statistical Analysis 
All statistical analysis was performed using signed 

Wilcoxon rank test. The univariate statistical analysis was 
applied to each variable in order to determine statistical 
significant (p<0.05) differences between pre-ictal, post-ictal 
and ictal phases. The best variables were selected and 
enrolled for univariate and multivariate analyses on the basis 
of discriminant function analysis. The leave-one-out 
procedure was used as the cross-validation technique. 

III. RESULTS AND DISCUSSION 

A. Time and Frequency Domain 
Table I contains the mean values of the analyzed time 

and frequency domain variables obtained from the EEG 
series filtered by ASEF procedure and without filtering. 
During the seizure, the  rhythm remained the most present 
rhythm described by the PSD, also observed in [13]. The 
evaluation of the PSD in the   band statistically 
discriminated between ictal and post-ictal phases, increasing 
these differences when ASEF filter was applied. In this way, 
the mean value of PSD  during the ictal phase was 
statistically lower than post-ictal phase (p<0.0005; 
accuracy=65.1%), that was accompanied by a relative 
increase of the ictal phase in the remaining bands. Between 
ictal and pre-ictal phases no statistically significant 
differences were found when considering PSD. However, for 
these cluster of seizures it can be observed a continuous 
decrease of the low frequency content (  power) while 
approaching the next seizure, from post-ictal to pre-ictal 

ending at ictal phase. The evaluation of STD showed higher 
values during ictal than pre-ictal (p<0.01). This result was 
accordant with [13]. 

B. Symbolic Dynamics 
Figs. 1 and 2 show the number of variables obtained 

TABLE I . TIME AND FREQUENCY DOMAIN INDICES 

Variables I Phase  
mean (SE) 

Pre-I Phase 
mean (SE) 

Post-I Phase  
mean (SE) 

Without ASEF Filtering 
STD 76.8 (4.7)* 58.9 (3.8)* 66.9 (4.7) 
PSD  58.5 (2.6)† 67.6 (1.4) 72.9 (1.8)† 

With ASEF Filtering 
STD 71.5 (4.0)* 56.2 (3.5)* 62.5 (4.2) 
PSD  58.9 (2.6)†† 68.4 (1.4) 73.3 (1.7)†† 

I: Ictal; SE, standard error; *p <0.01; †p <0.001; †acc.=61.8%;  
††p <0.0005; ††acc.=65.1%. 
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from symbolic dynamics in function of the parameter a in 
the tot band, without and with ASEF filtering, respectively, 
that well classify (p<0.05 and accuracy>60%) the seizure 
segments in pre-ictal, ictal and post-ictal phases. It can be 
observed that ASEF filtering (Fig. 2) permits a higher 
number of variables to better classify the seizure segments 
from p<0.05 till p<0.0005 than without ASEF filtering (Fig. 
1). In this way, the parameter a= 0.125 (see Fig. 2) allowed 
9 variables to classify the seizure segments with p<0.0005 
and 16 variables with p<0.05. Without ASEF filtering (Fig. 
1) no variables were found with p<0.0005 and only 6 
variables presented p<0.05. Then, these results confirmed to 
apply ASEF algorithm to the SD analysis of EEG filtered at 
the tot frequency band. A similar study was performed on 
each EEG frequency band, giving a particularized value of 
parameter a for each band, as it can be seen in Tables II and 
III.  

 

 
Figure 2. EEG signal with ASEF filtering: Total number of variables, as 
function of  values, obtained by symbolic dynamics that classify  the 

segments in pre-ictal, ictal and post-ictal phases with statistical significance 
level p<0.05 and accuracy>60%. 

 
Tables II and III present the best variables able to 

discriminate ictal from pre-ictal or post-ictal phases, only 

found at tot, α and  frequency bands. The mean values of 
those variables are presented in Table II and the statistical 
analysis results in Table III. Observing the behavior of the 
mean value of  variables and according how the 
symbolic dynamics algorithm separates into levels the time 
signal amplitude, the words  can be grouped into two 
sets: Set 1, including words composed by two symbols from 
the lower and/or upper level (level 1 and 3), ={033, 
301, 330}; Set 2, including words composed by two middle 
symbols (level 0 and 2), = {001, 100, 200, 223}. The 
mean values of variables  that  belong to the 
same set have a similar trend when ictal phase is compared 
with pre-ictal or post-ictal phases (see Table II). In 
particular, the words of Set 1 became much more frequent 
approaching the ictal phase than pre-ictal or post-ictal 
phases. This means that the probability of the words in Set 1 
was widely higher during the ictal phase than in the other 
phases. On the other hand, words of Set 2 present an 
opposite behavior, since these words tend to become less 
frequent in the ictal phase than pre-ictal or post-ictal phases. 
This means that the probability of the words in Set 2 was 
lower during the ictal phase than in the other phases. 

Concerning to fw(THf) and pw(THf), these variables could 
differentiate between ictal phases in the tot frequency band 
(a = 0.125) and  frequency band (a = 0.01). In the tot 
frequency band, fw(0.005) and pw(0.05) presented the lowest 
value in ictal phase compared with pre-ictal and post-ictal 
phases. This means that during the ictal phase a higher 
number of words (approximately 50%) have probabilities 
between 0.005 and 0.05, contrarily in pre-ictal and post-ictal 
phases the words are more distributed, indicating a lower 
regularity. In the  frequency band, fw(0.001) presented the 
highest value in ictal phase than pre-ictal phase, presenting 
ictal phase more regularity since RE(q=0.1) was the lowest 
(p<0.0005). This complexity behavior was in agreement 
with the results found by other authors [5,14]. 

Combining two variables from the tot frequency band 
permitted to increase the classification accuracy: P(100) and 
P(301), accuracy =73.7% between ictal and pre-ictal phases; 
P(001) and P(033), accuracy =70.4% between ictal and post-
ictal phases. 

 
Figure 1. EEG signals without ASEF filtering: Total number of variables, as 

function of  values, obtained by symbolic dynamics that classify  the 
segments in pre-ictal, ictal and post-ictal phases with statistical significance 

level p<0.05 and accuracy>60%. 

TABLE II.   SYMBOLIC DYNAMICS: BEST CLASSIFICATIONS 

Variables I Phase  
mean (SE) 

Pre-I Phase 
mean (SE) 

Post-I Phase 
mean (SE) 

tot frequency band             (a = 0.125) 
P(001) 0.0164 (0.0010) 0.0218 (0.0008) 0.0201 (0.0008) 
P(033) 0.0127 (0.0010) 0.0066 (0.0006) 0.0063 (0.0007) 
P(100) 0.0162 (0.0010) 0.0218 (0.0008) 0.0199 (0.0008) 
P(301) 0.0089 (0.0008) 0.0040 (0.0005) 0.0045 (0.0005) 
P(330) 0.0124 (0.0009) 0.0061 (0.0006) 0.0064 (0.0007) 
fw(0.005) 29.9 (0.91) 34.4 (0.82) 35.4 (0.95) 
pw(0.05) 3.1 (0.19) 4.0 (0.18) 3.4 (0.15) 

 frequency band              (a = 0.01) 
P(223) 0.0005 (0.0001) 0.0013 (0.0002) 0.0013 (0.0002) 
fw(0.001) 33.0 (0.77) 29.0 (0.75) 29.2 (0.79) 
RE(q=0.1) 4.74 (0.0384) 4.94 (0.0350) 4.93 (0.0389) 

 frequency band             (a = 0.1) 
P(200) 0.0848 (0.0060) 0.1201 (0.0058) 0.1223 (0.0054) 
I: Ictal; SE, standard error. 
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It should be noticed that variables calculated in  and   
frequency bands could not describe the ictal phases. Also, no 
variables were found presenting statistically significant 
differences comparing pre-ictal and post-ictal phases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSIONS 
The present work consisted of a preliminary study of 

intractable seizures in pediatric patients by applying a 
symbolic dynamics technique upon a database of scalp 
recorded EEG signals. The results obtained from symbolic 
dynamics applied to signals filtered by ASEF algorithm 
evidenced the presence of non-linear patterns that permit to 
localize seizure events with accuracy higher than 70%. 
While non-linear measures appeared to be sensitive to 
changes in ictal phase in relation to the periods of pre-ictal 
and post-ictal phases, linear measures were not. Also, this 
analysis has allowed the selection of the parameters involved 
in the methodology and the definition of the variables that 
best characterize state transitions of the system over time. It 
can be concluded that the proposed symbolic dynamics 
methodology can be effective on recognizing differences 
between epilepsy EEG events. 
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TABLE III SYMBOLIC DYNAMICS: BEST CLASSIFICATIONS 
 Variables Acc.(%) p value 
tot frequency band (a = 0.125)  
I vs. Pre-I P(100) 66.4 <0.0005 
 P(301) 69.1 <0.001 
 P(330) 66.4 <0.0005 
 fw(0.005) 64.5 <0.01 
 pw(0.05) 68.4 <0.0005 
I vs. Post-I P(001) 64.5 <0.05 
 P(033) 69.1 <0.0005 
 P(301) 66.4 <0.0005 
 P(330) 65.8 <0.0005 
 fw(0.005) 63.8 <0.01 

 frequency band (a = 0.01)  
I vs. Pre-I P(223) 67.8 <0.0005 
 fw(0.001) 66.5 <0.0005 
 RE(q=0.1) 64.5 <0.0005 
I vs. Post-I RE(q=0.1) 63.8 <0.0005 

 frequency band  (a = 0.1)  
I vs. Post-I P(200) 65.8 <0.0005 
I: Ictal; acc. = accuracy. 
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