
Protection of Electronic Health Records (EHRs)

in Cloud

Abdulatif Alabdulatif, Ibrahim Khalil, Vu Mai

School of Computer Science and Information Technology

RMIT university

Abstract—EHR technology has come into widespread use and
has attracted attention in healthcare institutions as well as in
research. Cloud services are used to build efficient EHR systems
and obtain the greatest benefits of EHR implementation. Many
issues relating to building an ideal EHR system in the cloud, espe-
cially the tradeoff between flexibility and security, have recently
surfaced. The privacy of patient records in cloud platforms is still
a point of contention. In this research, we are going to improve
the management of access control by restricting participants’
access through the use of distinct encrypted parameters for each
participant in the cloud-based database. Also, we implement and
improve an existing secure index search algorithm to enhance the
efficiency of information control and flow through a cloud-based
EHR system. At the final stage, we contribute to the design of
reliable, flexible and secure access control, enabling quick access
to EHR information.

I. INTRODUCTION

Designing an access control model for encrypted EHRs

in the cloud relies mainly on various aspects, including the

encryption scheme, the key management mechanism of en-

crypted EHRs and the natural flow of communication between

the different participants. Since EHRs systems have many

participants with different security clearances who must have

frequent access to the system, there is a need to apply an

efficient and reliable hierarchical structure to manage the

participants and to control the data flow inside the systems.

Our access control design depends fully on hierarchical key

management for the encryption/decryption keys.

A great deal of research has focused on hierarchical key

management structure. In a first attempt Akl and Taylor

[1] suggest a model based on cryptography to arrange the

data in a hierarchical structure. This model has a master

encryption/decryption key on which all the lower level keys

depend on it. In this case, if any key in a lower level changes,

all the other keys must be regenerated. One advantage of this

model is that the master key holder does not need to keep all

keys under his master key since all of them are derived from

it. However, it costs time and overhead when the owner of the

keys wishes to change any key in the hierarchy.The approach

of [2] is based on top-down key generation, and Harn and

Lin’s [3] is based on the inverse (bottom-up) approach. All of

these suggestions have a specific drawback: the relationships

between the levels of the hierarchy are deep, and storage space

increases depending on the depth of the hierarchy. In 2003, Lin

et al. [4] suggested an access control model which has two

keys in each security class: a secret key and a derived key

and which describes the relationship between security levels

in hierarchical structure.

Generally speaking, Kayem et al. [5] illustrate clearly that

most encrypted access control in a hierarchy can only be

achieved by one of two main models, a dependent key model

or an independent key model. The dependent key model is

described by the relationship between the master key at the top

of the hierarchical structure and the lower level keys, which

are explicitly derived from the master key. Thus, any change

in lower level keys will lead to a change in all the keys in

the structure because they are dependent on each other [5]. In

an independent key model the lower level keys do not depend

on the master key; they are generated separately without any

relationship that links them together [5]. In addition, the lower

level keys are independent of each other. The main differences

between these two models include processing overhead, the

amount of time consumed and storage capacity [5]. In our

design we will combine both the dependent and independent

key models to take advantage of both models’ benefits while

avoiding their disadvantages. We will show how can we apply

the new key management model in our EHR system. This

system as shown in Fig. 1 will provide EHR owners with full

control over their records. An authorized third party will be

responsible for authenticating the participants who will interact

inside the system.

Identity Authority (IU)

Healthcare ProviderPatient

Encrypted Cloud-based

 EHRs

(1) (1)

(2) (2)

(4) (4)

(1) Authentication Request

(2) Authentication _ ID

(3)

Exchange encrypted

EHRs

(4)

Exchange keys process

(3)

Fig. 1. System architecture overview

In this study, we propose a new communication mechanism

to serve as an integrated system between the patient and

the service provider. The role of the different parts in the

generation of the encryption/decryption key, the management

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4191

of communications and the exchange of information will be

shown in detail. We introduce the work flow and the main

participants in the EHR system in Section II. The proposed key

management scheme is described in Section III. We present

the implementation of an existing search tool as part of the

access control model for our system as well as improvement

options and ways they might be applied to the proposed system

in Section IV.

II. SYSTEM ARCHITECTURE

Our access control model design depends on three main

participants involved in the system life cycle Fig. 1. These

participants interact with each other in direct and indirect ways

to perform different tasks in the cloud-based EHR system. The

participants are described as follows:

A. Administrator or Identity Authority (IU)

We introduce the administrator as a trusted third party, such

as a government institution. This participant in the system

is responsible for two main functions. The administrator (1)

authenticates all participants who interact with the system and

(2) serves as a point-of-contact between the patients and the

healthcare providers by providing the encryption/decryption

keys thought a SSL connection.

B. The End User or Patient

The patient is the main stakeholder and participant in our

system and drives our objectives. The end user (or patient)

has two main responsibilities: (1) A new user must send an

authentication request to the IU to get an identification number

(ID) to be able to use the system services, and (2) The patient

must make sure that his computer uses encryption/decryption.

It must be fully secure and protected from the outside world to

maintain the security of the keys, the key-generating functions

or any related information that might lead to leaks of private

information or threats to the security of the system.

C. Healthcare Providers

In our system, we assume that there are many healthcare

providers who will need to interact with different parts of the

system. Therefore, we also assign a user ID to the healthcare

provider. This information will help the system to validate

the identity of the members and grant them the appropriate

permission to access specific patient records. Each healthcare

provider has three main tasks: (1) Each healthcare provider

must apply for an authentication request to the IU to obtain

legitimate access to use the system, (2) Healthcare providers

must request the key for a specific patient EHR from the IU

and must provide appropriate parameters in the request and,

(3) The provider may decrypt and update that information

but must re-encrypt the document with the same key before

sending it back to the cloud database.

In real-world systems, healthcare institutions have at least

the following members: physicians, nurses, laboratory workers

and other employees. Each member of these groups must have

access to some part of the patient records for specific purposes.

Therefore, we have developed a hierarchical structure to

provide different access permission to providers according to

they need to access. Fig. 2 describes a proposed structure for

organizing a patient’s records in the cloud.

Main partitions

Patient- PPatient

Lower level

 partitions

Dental Clinic

 Patient

 History

 Patient

 Conditions
... Patient

 History

Optometry Clinic

... Test

Results

 Patient

 History

 Lab

Results

...

Ophthalmology Clinic

...... ...

Neurology Clinic

Fig. 2. Proposed structure for organizing patients records in the cloud

D. The cloud database

The cloud database is the backbone of our system. It

is a central data Center for holding and organizing patient

EHRs. Requesters must provide all information related to

their access rights as well as the requested documents. Fig.

2 shows that our cloud database is designed in a hierarchical

manner. This structure will help us to provide an efficient key

management mechanism and enables secure distribution of en-

cryption/decryption keys to participants. Since each participant

in the system should be able to access only specific documents

rather than all patient records, we will specify each partic-

ipant’s permission by setting different encryption/decryption

keys for each different group of documents, depending on who

should be able to have access to those documents.

In order for access permission to be granted, each document

that is produced for any participant must include patient

details, healthcare provider details, document type (e.g. per-

sonal, diagnosis or lab), category (e.g. dental) and document

publisher (e.g. patient or physician). This information, together

with the authentication parameters which prove the eligibility

of the applicant to upload and download EHRs, will be used

to grant access to different EHRs in the cloud database.

III. DOCUMENT STRUCTURE AND KEY MANAGEMENT

The key management scheme depends completely on how

the documents are structured inside the cloud database. As

we have many different participants who have to access to

the database, we implement a hierarchical structure that limits

access permissions for different participants based on the need-

to-know principle. The hierarchical structure is shown in Fig.

2 keeps all records for any patient under the Patient section,

Since the database is in the cloud, patients have the ability to

access their records from different places and at any time.

The patient is responsible for managing the keys of his or

her documents. The main partitions for each patient will be la-

belled as Dental clinic records, Ophthalmology clinic Records,

Neurology clinic Records and other medical specialties. These

are directly located under each patient’s section (see Fig.

2); there will be up to eight partitions in most cases. These

main partitions of patient documents will have an independent

key model to manage their keys. Even though it is the

patients responsibility to manage their own keys, we will use

4192

a dependent key model to manage the keys under each main

partition of the patient documents because we assume that they

will used frequently by different healthcare workers. Thus, all

lower level keys belonging to different main partitions need

to change regularly to ensure the security of records. As each

patient’s records have an individual hierarchical structure, they

will be managed using both an independent and a dependent

key model in our design.

1) Independent key model: The model [5] depends on

different distributed keys for all main partitions of the patient

documents. The patient (P) has a group of main partitions of

his/her records, (S1,..,Sn).

P = {S1, S2, S3, ..., Sn} where n ≈ 8 (1)

All partitions of group (P) will have independent keys

(S1k,..,Sik) under patient control (P) So.

P = {S1k, S2k, S3k, ..., Sik} where i ≈ 8 (2)

which are fully independent from each other, and no one can

derive any key depending on another key from the same level.

The structure for this model is shown in Fig. 3.

The idea behind using an independent key model for the

main partitions is that each key will be independent and

capable of being regenerated for any partition (Sn) without

affecting any other partition under the main partition (P).

Moreover, applying this model has additional advantages and

disadvantages. First, the main advantage is the independence

of the main partitions keys (S1k,..,Sik). Second, the security

level is enhanced because there is no relationship between

partition keys. Finally, the time and overhead required to

regenerate one of the keys is reduced because they are fully

independent from each other. However, a disadvantage of

using an independent key model in this case is that the patient

has to keep all partition keys (S1k...Sik) secure, which is

accomplished at a cost.

2) Dependent key model: This model [5] generates related

keys in hierarchical form depending on the master key. We will

use this model to generate lower level keys under each main

partition. For each main partition (Sn), there are lower levels

uniquely identified by using identifiers (C1,.., Cm) where:

Sn = {C1, C2, C3, ..., Cm} where m ≈ 5 (3)

Each lower level key (Cik) is derived from its main partition

key by using a one-way hash function to combine its identifier

with the main partition master key (Sik). For example, we

can generate a lower level key C1k that belongs to the main

partition S1 as follows:

C1k = f(S1k, C1) (4)

Under each main partition (Sn) are lower levels (C1, Cm)

which are derived from one master key (Sik). Each lower

level has different documents and the need-to-know principle

is applied to determine each lower level permission. The

generated keys will be granted depending on the request type

and participant permissions. The relationship between each

main partition key and its lower levels’ keys is a partial

relation:

Cik ≤ Sik (5)

This shows any participant with security permission Sik

is able to access all documents under that main partition

which have lower security permission than Sik (i.e., Cik).

Using a dependent key model at this level of our system has

some advantages and disadvantages. In practical situations,

the main partitions and lower levels belonging to them are

accessed frequently by many participants. Thus, it is beneficial

to regenerate the whole partition group’s keys regularly since

they are dependent on each other. The main partition (Sn) has

the ability to check and manipulate all lower levels (C1,..,Cm)

under it because the dependent key model applies the partial

relation between the master Sik key of lower level keys

(C1k,..,Cik). The final key management structure is shown in

Fig. 3.

S1 - S1k S2 - S2k Sn - SikMain partitions

Patient- PPatient

Lower level

 partitions
C1-

C1k

Independent

 keys

Dependent keys on their

 main partitions’ keys
C2-

C2k

C3-

C3k

C4-

C4k

Cm-

Cik

Fig. 3. Dependent and independent key management structure

The subposet key management (SPKM) scheme [5] is used

as a part of our key management scheme to derive lower level

keys from their main partition keys. The SPKM scheme is

extended from the Akl and Taylor scheme [1] and it decreases

key update cost by reducing the number of keys that need to

be replaced and by eliminating collusion.

IV. SEARCH ALGORITHM DESIGN (SEARCH TOOL)

To address cloud-based EHR privacy and security issues,

we must consider how we can encrypt and maintain EHRs

in the cloud. Moreover, we must take into account that there

will be millions of records in the cloud and that many stake-

holders will need access to these records frequently for many

purposes. Therefore, an EHR encryption algorithm must not

only enhance privacy in the cloud, but also be fast, reliable and

enable efficient searching. In addition to that, the impact of any

untrusted server in the cloud participating in the system must

be considered: how much information should that server know

about the system and the encrypted records? Solutions provide

both secure encryption and encrypted search algorithms. One

of these, proposed by Eu-Jin Goh [6], uses a secure pre-

processed index for a given set of documents and keeps some

credentials in a specific bloom filter [7] as a part of the search

process for the encrypted documents.

A. Algorithm design

Goh’s secure index scheme [6] depends on the bloom filter

structure [7] to store different random hash values for the

words in any given document; these values are used to check

4193

the availability of the words using the generated bloom filter
and the actual document is not needed. This helps to encrypt
the plain-text documents and upload them to the cloud with
the bloom filter. Both the encrypted documents and the bloom
filter will be meaningless should any unauthorized user be able
to access them in the cloud. On the other hand, authorized
participants will be able to search and retrieve documents in
a secure way.

B. Secure index implementation

The secure index is implemented in three stages. First, the
bloom filter is generated and contains random hash values
corresponding to the words in a given document. Second, there
is a trapdoor for each word in any given document that is
handed over later to the untrusted server to help find possible
matches without providing the plain-text data. Third, the actual
plain text is encrypted using the selected encryption algorithm
and is passed together with the bloom filter to an untrusted
server to be available in the cloud.

1) Bloom filter: The bloom filter consists of an array of bits
which are initially all set to 'O. Any new element is added to
the bloom filter set after the number of hashes are performed.
The output of each hash operation is added to the index by
setting the position of that hash value to ' 1.

2) Encryption: The implementation of the encryption pro
cess relies on generating a bloom filter [7] as an index for a
given document by using a Build Index function Buildlndex
(Di, K master). The index will be used to generate the bloom
filter for a document (Di) with the given master key. Thus,
by getting the document and the master key, the trusted client
splits the document into separate words. Then, for each word
(Wi) in that document we follow these steps:

• Generate a trapdoor for Wi using the master key and
suitable hash function:

Tw = {f kl(Wi), f k2(Wi), f k3(Wi), f k4(Wi)} (6)

where (i) is the word number in a document.
• Generate a codeword (Ci) based on the trapdoor (Ti) by

taking every value of the trapdoor and hashing it with
Di and then assigning the resulting values to the Bloom
filter as values between 0 and 2047. We had specified the
Bloom filter array size in our implementation to 2048.

Tw ={Ci= f Di(Tw), f Di(Tw), fDi(Tw), f Di(Tw)}
(7)

• Add code word values to the bloom filter to represent
the index of the document. Then encrypt the plain-text
document using Data Encryption Standard (DES).

3) Search: When a trusted client (e.g. a patient) wants to
search for a specific word or multiple words, he/she has to
generate a trapdoor for each word separately as previously
explained and hand it to an untrusted server with the document
identifier Di. Then, the untrusted server implements an itera
tive operation for all the documents it stores. It will generate
the codeword for a given word; the bloom filter corresponding
to a given document identifier will be checked to see if the

generated codeword is a member in that bloom filter or not,
and the results will be shown. Fig. 5 shows a general overview
of secure index algorithm implementation.

Secure d ient

One or

multipl• words
Gener ilte tnpdoor

Fig. 4. Secure index algorithm implementation

We have used Java programming language to implement our
proposed architecture. Java supports a wide range of security
libraries that made our implementation easier. Java security
libraries are used for initial user authentication, and also the
encryption mechanism used to generate word trapdoors. In
order to generate word trapdoors, we have used a strong
hashing algorithm SHA-256, which provides unique hash
values. A database stores all hashed words information that
can be used for searching the encrypted document with the
help of bloom filters.

V. CONCLUSION

This research has illustrated how our key management
scheme can enhance the efficiency and the security of EHRs
without the need for a third-party interaction during the ex
change of encryption/decryption keys between the participants
within the system. Moreover, it has demonstrated how an
existing search tool can be used efficiently to search inside
encrypted EHRs in the cloud. In the future, we are planning
to design an access control model for EHRs which will be
adaptable with our key management scheme and the searching
mechanism.

REFERENCES

[l] S. Aki and P. Taylor, "Cryptographic solution to a problem of access
control in a hierarchy," ACM Transactions on Computer Systems (TOCS),
vol. 1, no. 3, pp. 239-248, 1983.

[2] S. MacKinnon, P. Taylor, H. Meijer, and S. Aki, "An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy," Computers,
IEEE Transactions on, vol. 100, no. 9, pp. 797-802, 1985.

[3] L. Harn and H. Lin, "A cryptographic key generation scheme for
multilevel data security," Computers & Security, vol. 9, no. 6, pp. 539-
546, 1990.

[4] I. Lin, M. Hwang, and C. Chang, "A new key assignment scheme
for enforcing complicated access control policies in hierarchy," Future
Generation Computer Systems, vol. 19, no. 4, pp. 457-462, 2003.

[5] A. Kayem, S. Aki, and P. Martin, Adaptive cryptographic access control.
Springer, 2010, vol. 48.

[6] E. Goh et al., "Secure indexes," An early version of this paper first
appeared on the Cryptology ePrint Archive on October 7th, 2003.

[7] B. Bloom, "Space/time trade-offs in hash coding with allowable errors,"
Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

4194

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

