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Abstract— Nomogram based on multiple logistic regression 

(MLR) is a standard technique for predicting diagnostic and 

treatment outcomes in medical fields. However, the 

applicability of MLR to data mining of clinical information is 

limited. To overcome these issues, we have developed 

prediction models using ensembles of alternative decision trees 

(ADTree). Here, we compare the performance of MLR and 

ADTree models in terms of robustness against missing values. 

As a case study, we employ datasets including pathological 

complete response (pCR) of neoadjuvant therapy, one of the 

most important decision-making factors in the diagnosis and 

treatment of primary breast cancer. Ensembled ADTree 

models are more robust against missing values than MLR. 

Sufficient robustness is attained at low boosting and ensemble 

number, and is compromised as these numbers increase. 

 

I. INTRODUCTION 

Decision-making in the diagnosis and treatment of breast 
cancer is becoming increasingly complex as medical 
examination technologies advance, and multiple adjuvant 
therapies become available. Prior to surgery, neoadjuvant 
chemotherapy (NAC) is administrated to reduce the tumor 
size (thereby preserving breast tissue) and to assess 
chemosensitivity. The latter assists the design of 
post-operative adjuvant therapy [1]. The NAC response must 
be evaluated by low-invasive techniques such as imaging. 
This goal has inspired the development of many 
mathematical prediction models. 

Predicting the pathological complete response (pCR) of 
NAC is regarded as a binary classification problem whose 
outcomes comprise pCR or non-pCR. The input variables are 
clinical features such as tumor size, age, and estrogen 
receptor expression status. The associations among these 
variables are commonly quantified by multiple logistic 
regression (MLR) models. Nomogram is a visualized 
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representation of a prediction model. In the clinical breast 
cancer setting, many MLR nomograms are available, which 
not only facilitate MLR calculations of MLR but also 
establish quantitative relationships for such factors as 
chemotherapy sensitivity [2-4], non-sentinel metastasis in 
patients with sentinel-positive status [5-7], prognosis-specific 
to triple-negative subtype [8], and risk of arm lymphedema 
after axillary lymph node (AxLN) resection [9] in patients 
with primary breast cancer. However, for generality and to 
prevent over-fitting, the MLR incorporates only a few 
independent variables as predictive features, which limits its 
prediction accuracy. 

Clinical problems can also be solved by machine learning 
techniques, but these approaches require careful 
consideration of problem-specific data. For example, missing 
values are common in datasets, especially in retrospectively 
collected clinical data. An if-then type decision tree, usually 
built by the ID3 or C4.5 algorithm, is preferred because it 
enables clinical or biological validation of the model as well 
as its statistical validation. However, such models are 
unsuitable for data with missing values because they cannot 
predict the probability of belonging to a class in many cases. 
Therefore, these models cannot inherently predict the 
outcome of an incomplete dataset, which is a serious 
disadvantage compared with MLR. The same disadvantage 
occurs in classification and regression tree (CART) models 
[10].  

A common technique applied to binary problems is 
Bayesian network (BN), which maintains interpretability 
throughout the model development. Other popular methods 
are artificial neural networks (ANN), and support vector 
machines (SVM). These methods are frequently more 
accurate than BN because they are generalizable to non-linear 
problems, but are less interpretable. Parametric features of 
these methods are also problematic. Model development 
requires optimization of many parameters. To overcome 
these drawbacks, we have developed alternative prediction 
models to help decision-making in breast cancer treatment 
and diagnosis [11, 12]. The models, based on the alternative 
decision tree (ADtree) model [13], have been validated in 
predictions of axillary lymph node (AxLN) metastasis [12] 
and pCA after NAC in patients with primary breast cancer 
[11]. The tree is an improved-accuracy epigone of the if-then 
type decision tree [13] and processes more variables [11, 12]. 
In this study, we compare the robustness of ADtree and MLR 
to missing values in datasets. 
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II. DATA DESCRIPTION 

The previously published datasets used in our study are 

provided in [11] and are merely summarized here. Data from 

150 patients were collected from multiple institutes, 

including Tokyo Metropolitan Cancer and Infectious 

Diseases Centre at Komagome Hospital, Osaka National 

Hospital and Tsukuba University Hospital (here named data 

1). These data were used to train the prediction model. We 

also collected 173 patient data from the Organisation for 

Oncology and Translational Research OOTR N003 trial 

(Niigata Cancer Centre Hospital, National Kyushu Cancer 

Centre and Aichi Cancer Centre) as independent validation 

datasets (named data 2). The number of missing values 

depended on the patient data; see [11] for details. 

All patients received the same neoadjuvant; four courses 

of FEC (5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2 

and cyclophosphamide 500 mg/m2, i.v., every 3 weeks) 

followed by four courses of docetaxel (75 mg/m2, i.v., every 

3 weeks) with or without capecitabine (1,650 mg/m2/day, 

oral administration, for 14 days every 3 weeks). 

Patients whose tumor had reached 5 cm and who had 

completed 75% of the planned NAC courses were eligible 

for the study. The data included 28 clinicopathological 

variables, such as histological type, estrogen receptor (ER) 

status, HER2 status, histological/nuclear grade, and 

ultrasound imaging findings. The study protocol was 

approved by the institutional review board of Kyoto 

University Hospital.  

 

III. METHODOLOGY 

A. Comparison of ADTree and MLR for missing value 
robustness 

The ADTree-based prediction model used in the 
robustness test had been trained using data 1 [11]. Here, the 
model building procedures are summarized. The model 
parameters were optimized based on 10-fold 
cross-validations (CVs) using a typical training/test ratio 
(90%/10%). Prediction performance (ability of the model to 
correctly discriminate pCR from non-pCR) was evaluated by 
area under the receiver operating characteristics curve (AUC). 
Following training, the model was validated on test data using 
a parameter set. This procedure was repeated 10 times, such 
that all patients had been included in the training dataset at 
least once. The CV was repeated 200 times and the 
parameters evaluated from the averaged AUC. The above 
procedure was repeated for all possible parameter sets. The 
parameters yielding the best AUC values in CV tests were 
adopted in subsequent analysis. The parameters, which 
include number of nodes in the ADTree model (boosting 
number), the number of trees, and a random seed to generate 
multiple cohorts for the ensemble, are described in [11]. 

The model was constructed by ensemble techniques used 
for combining ADTree models and 19 ADTrees, allocating 
three nodes per tree. Number of variables was 15. The AUC 
values were 0.766 (P < 0.0001) using data 1 and 0.787 (P < 
0.0001) when validated with data 2. 

MLR models were also developed using data 1 and 
yielded 0.754 (P = 0.00019) after validation with data 2. Four 
features for MLR were selected by stepwise forward selection 
(P < 0.2 as each new feature was added). After eliminating 
data without missing values, data 1 and data 2 comprised 121 
and 172 elements, respectively. 

To evaluate robustness against missing values, artificial 
datasets were prepared by replacing each value with a random 
value. Numerical features were assigned a randomly 
generated value within the actual data range. For ordinary 
scale and nominal scale features, randomly generated 
possible scales were assigned. In this way, 200 sets of both 
training and validation datasets were generated. 
Ready-developed ADtree-based and MLR models were 
validated on these generated datasets. 

 

B. Effect of ensemble and boosting of prediction model on 
missing value robustness 

To gauge the effect of ensemble and boosting number on 
robustness to missing values, we changed the numbers of 
trees and nodes, and repeated the analyses described in 
Section A. 

 

Figure 1 AUC values of ADtree and MLR models using data 1 and data 2. 

Each box-whisker plot includes 200 AUC values. The horizontal bars 

indicate (from top to bottom) the maximum, quartile, median, third-quartile, 

and minimum. The asterisks indicate P < 0.0001. 

 

IV. RESULTS AND DISCUSSION 

Figure 1 shows the distribution of AUC values yielded by 
the ADTree-based model (here condensed to ADTree) and by 
MLR. For both datasets, the AUC values of ADtree are 
significantly higher than those of MLR (P < 0.0001; 
Student’s t-test). For the validation datasets (data 2), ADTree 
and MLR yielded 0.783 (95% CI: 0.786 – 0.789) and 0.767 
(95% CI: 0.765 – 0.770), respectively. The upper and lower 
95% CI differs by 0.003 for ADTree and 0.05 for MLR; 
therefore, the AUC values of ADTree are slightly more 
consistent than those of MLR. 

Figure 2 plots the AUC value of ADTree models as a 
function of ensemble number. The boosting number (3) had 
been previously optimized by CV using data 1. In both cases 
(Fig. 2A and 2B, displaying results for data 1 and data 2, 
respectively), the AUC values are minimized when a single 
tree is used, i.e. without ensemble techniques. Moreover, in 
both cases, the overall AUC values dramatically increase for 
small bagging number, indicating that ensembling enhances 
the robustness against missing values more efficiently when 
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the ensemble number is small. This trend is particularly 
obvious for data 2 (Fig. 2B); the AUC values dramatically 
increase at ensemble number 4 and decrease slightly 
thereafter. Thus, a few ensemble numbers sufficiently 
enhance the robustness against missing values.  

A similar analysis was conducted on boosting number. 

The number of nodes in a tree was varied while the ensemble 

number was fixed at 19 (like the fixed boosting number, this 

number had been previously optimized by CV of data 1). As 

is evident in Fig. 3, as the boosting number increases, the 

overall AUC values uniformly increase for data 1, possibly 

indicating over-fitting. By contrast, for data 2, the highest 

AUC is attained for three nodes; additional nodes exert little 

influence on AUC values. In both cases, the AUC variability, 

i.e. the difference between maximum and minimum AUC 

values, decreases as boosting number increases, indicating 

that the model becomes less sensitive to missing values at 

higher boosting number. 

 

A) 

 
B) 

 
Figure 2 AUC values of ADtree model, obtained by varying the ensemble 

number at fixed boosting number for (A) data 1and (B) data 2. The x-axis 

indicates the ensemble number i.e. the number of trees in a model. The AUC 

values and meaning of the horizontal bars in the box-whisker plots are as 

described in Figure 1. 

 
A) 

 
 

B) 

 

Figure 3 AUC values of ADtree model, obtained by varying the boosting 

number at fixed ensemble number for (A) data 1 and (B) data 2. The  x-axis 

indicates the boosting number i.e. the number of nodes in a model. The AUC 

values and meaning of the horizontal bars in the box-whisker plots are as 

described in Figure 1. 

V. CONCLUSION 

In this study, we compared the ensemble ADTree and 

MLR models in terms of robustness against missing values, 

using NAC-administrated breast cancer data. Although many 

studies have compared the accuracy among different data 

mining methods, insensitivity to missing values is also 

important, especially in data mining of retrospectively 

collected medical datasets, which frequently contain missing 

values. In fact, since the missing values might not be 

randomly missing, predictive ability could be enhanced by 

identifying the type of missing data and appropriately 

estimating their values. However, because of the complex 

structure of clinical datasets, we instead evaluated the model 

on randomly replaced values, an approach that is applicable 

to any missing values. The ensembled ADtree yielded higher 

overall accuracy (higher AUC values) than MLR. In addition, 

sufficiently high robustness was attained at low ensemble 

and boosting number. 
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