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Abstract— The level of sedation in patients undergoing 
medical procedures evolves continuously, such as the effect of 
the anesthetic and analgesic agents is counteracted by pain 
stimuli. The monitors of depth of anesthesia, based on the 
analysis of the electroencephalogram (EEG), have been 
progressively introduced into the daily practice to provide 
additional information about the state of the patient. 
However, the quantification of analgesia still remains an 
open problem. The purpose of this work is to analyze the 
capability of prediction of nociceptive responses based on the 
time-frequency representation (TFR) of EEG signal. 
Functions of spectral entropy, instantaneous power and 
instantaneous frequency were calculated in order to predict 
the presence or absence of the nociceptive responses to 
different stimuli during sedation in endoscopy procedure. 
Values of prediction probability of Pk above 0.75 and 
percentages of sensitivity and specificity above 70% and 65% 
respectively were achieved combining TFR functions with 
bispectral index (BIS) and with concentrations of propofol 
(CeProp) and remifentanil (CeRemi). 

I. INTRODUCTION 

The aggression that occurs on patient undergoing 
surgery triggers a series of responses in the body and in 
the tissue that may have implications on the outcome of 
the surgical process. To mitigate the intensity of these 
responses, a certain level of protection or "anesthetic state" 
must be achieved. The anesthetic state may be defined as 
the combination of pharmacological effects that minimize 
the impact of surgical aggression in the patient. 

For several years, various methods have been developed 
for the noninvasive assessment of the level of 
consciousness during general anesthesia [1-5]. Since the 
main action of anesthetic agents occurs in the brain, a 
reasonable choice is to monitor the 
electroencephalographic signal (EEG). Changes on the 
EEG signal are directly related to biochemical variations 
of a drug induced in the brain and the effects on individual 
behavior. According to various methods, different EEG 
monitors have been developed. The three most important 
monitors consider bispectrum (BIS, A-2000 monitor, 
Aspect Medical, USA) [6,7], entropy (SE and RE - State 

and Response Entropy, S/5 Entropy Module, GE 
Healthcare, Finland) [8] and auditory evoked potentials 
(AAI, AEP Monitor/2, Danmeter, Denmark) [9,10] 
whereas the most recent is the qCON (Quantium Medical, 
Spain) [11]. 

However, it has not been possible to develop a system 
capable of quantifying analgesia. The classic methods 
include hemodynamic response, analysis of 
electrocardiographic waveforms variability, degree of 
respiratory sinus arrhythmia, plethysmographic response 
[12], pulse wave, skin conductance [13], and more 
recently the Surgical Stress Index (SSI ®) [14], and the 
ANI (Metrodoloris, France) [15], based on the heart rate 
variability. None of them has proven to be clinically useful 
methods because they are influenced by the response of 
the autonomic nervous system (ANS) and they are 
sensitive to other disturbances, such as changes in blood 
pressure or heart rate due to patient's baseline condition 
(hypertension, arrhythmias of diverse etiology), 
sympathomimetic drug delivery or unpredictable situations 
such as perioperative bleeding. 

In this work, indexes based on Time-Frequency 
representation (TFR) were proposed in order to assess the 
prediction of the response to pain stimulation on the EEG 
signal during endoscopy procedure. Several variables were 
defined and statistical analysis was performed in order to 
evaluate the prediction of responding to the application of 
a painful stimulus such as nail bed compression or 
endoscopy tube insertion. EEG windows of 60 seconds 
were taken between 30 s and 90 s before the application of 
each stimulus in order to avoid the effect of the 
stimulation on the signal (evoked potential, movement 
artifact, EMG, etc.). 

II.  MATERIALS AND METHODOLOGY 

A. EEG Database and Preprocessing 
The database belongs to the Department of 

Anesthesiology, Hospital Clínic of Barcelona (Spain). 
This database contains data recorded from more than 300 
patients undergoing sedation-analgesia for endoscopic 
procedures. For each patient, the following information is 
available: predicted concentrations of propofol (CeProp) 
and remifentanil (CeRemi); bispectral Index (BIS) and 
electroencephalogram (EEG) signal. The observed 
categorical responses after applied nociceptive stimuli 
include the evaluation of the Ramsay Sedation Scale level 
(RSS) (see Table I) [16] after nail bed compression and 
the presence of gag reflex during endoscopy tube insertion 
(GAG).
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All the patients belong to 1-3 ASA classification. 
Patients with altered central nervous system, medicated 
with analgesics or drugs with central effects on the 
perception of pain, from moderate to severe 
cardiomyopathy, neuropathy or hepatopathy that needed 
control during the anesthetic process were not included in 
the database.  

The EEG was recorded with a sampling frequency of 
900 Hz, with a resolution of 16 bits and a recording time 
of about 60 min. All information CeProp, CeRemi, BIS, RSS 
and GAG were annotated with a resolution of 1 second. 
After the application of a FIR band pass filter of 100th 
order, with cut-off frequencies of 0.1-45Hz, the EEG 
signals were resampled at 128 Hz. Then, the EEG signals 
were segmented in windows of length of 1 minute between 
30 s and 90 s before the response annotation of RSS or 
GAG. 

The annotated RSS was assigned to the previous 1 
minute length window if the differences ΔCeRemi and 
ΔCeProp between the first and the last second of the 
window were ΔCeRemi<0.1 μg/ml and ΔCeProp<0.1 μg/ml. 
Otherwise, the window was cut at the sample where the 
conditions were satisfied. Windows of EEG containing 
high amplitude peak noise were processed with a filter 
based on the analytic signal envelope (ASEF) [17]. If the 
difference between adjacent samples were higher than 
10% of the mean of the differences of the previous 
samples, the windows were cut. If the length of the 
window preprocessed was less than 5 seconds, the window 
was not analyzed. 

 
TABLE I.  

RAMSAY SEDATION SCALE 
Score Response 
1 Anxious or restless or both 
2 Cooperative, orientated and tranquil 
3 Responding to commands 
4 Brisk response to stimulus 
5 Sluggish response to stimulus 
6 No response to stimulus 

 

B. Time-Frequency Representation  
Time-Frequency Representation (TFR) based on Choi-

Williams distribution (CWD) (1) is calculated by 
convoluting the Wigner distribution (WD) (2) and the 
Choi-Williams (CW) exponential (3), [18,19] 
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In this work, c was set to 0.005 [19]. For a more accurate 
analysis, the spectrum was divided into the characteristic 
frequency bands of the EEG signal: , 0.1-4 Hz; , 4-8 Hz; 

, 8-12 Hz; β, >12 Hz; total frequency band (TB), 0.1-45 
Hz.  

The functions, instantaneous power (IP) and 
instantaneous frequency (IF), were obtained from 

. IP was calculated for each window as the area 
under the curve of the  at each instant. In each of 
the considered bands, this value was normalized by the 
total power. IF was defined as the mean frequency of the 
spectrum at each instant [19].  

Instantaneous spectral entropies were calculated on  
 as it is shown in (4) and (5). 
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where f1 and f2  are the limits of the frequency bands. 
Txx(t,f) was normalized by the total area. These non-linear 
measures were based on the traditional definition of 
Shannon (Shan) and Rényi (Re) entropies, where Txx(t,f), 
for each t, was used instead of the probability mass 
function. In this way, it is possible to have a measure of 
the complexity of the spectrum for each instant of time.  

Several variables were defined on the TFR functions 
along the time: mean (m) and median (med) values of IP 
and IF; mean, median, maximum (max) and minimum 
(min) values of SE_Shan and SE_Req. In this work, 
different values of the control parameter of Re were taken 
into account: q = {0.1, 0.2, 0.5, 2, 3}. 

C. Definition of Variables and Statistical Analysis 
A non-parametric test, U of Mann-Whitney test, was 

applied and a significance level p-value <0.05 was taken 
into account. Variables that satisfy this condition were 
considered for building a discriminant function, in order to 
predict the pain responses. The leaving-one-out method 
was performed as validation method. 

For the RSS evaluation, linear discriminant analysis 
was performed taking into account two groups: variables 
belonging to windows with responsive levels of RSS, 
RSS= {2, 3, 4, 5}, and variables belonging to windows 
with unresponsive level of RSS, RSS=6. The test was 
repeated 4 times; in each trial the group of responsive 
levels was progressively reduced by removing the 
windows of the lowest RSS level: trial1, (2≤RSS≤5) vs 
RSS=6; trial2, (3≤RSS≤5) vs RSS=6; trial3, (4≤RSS≤5) vs 
RSS=6; trial4, RSS=5 vs RSS=6. Another analysis was 
performed taking into account the presence or the absence 
of GAG, GAG 1 and GAG 0, respectively. Sensitivity 
(Sen) and specificity (Spe) were calculated for testing the 
performance of TFR variables. Sensitivity represents 
responsive states (RSS<6 and GAG 1) and specificity 
represents unresponsive states (RSS=6 and GAG 0).  

The ability of the variables to describe pain responses 
was also evaluated using prediction probability (Pk), which 
compares the performance of indicators [20]. The Pk 
coefficient is a statistic commonly used to measure how 
well an index predicts the state of the patient. A Pk of 1 
represents a perfect prediction and 0.5 is not better than 
tossing a fair coin. The Pk avoids the shortcomings of 
other measures being independent of scale units and it 
does not require knowledge of underlying distributions.  
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III. RESULTS AND DISCUSSION 
Tables II to V contain the results of the variables that 

give the best performances in the prediction of responding 
to the application of the painful stimulus (RSS or GAG). 
TFR variables that allow the best Pk for GAG stimulation 
were found to be mIP  and medSE _Req=0.1 (Table II). 
These variables also describe the RSS states with Pk > 0.7 
(Table IV). As it can be seen in Fig. 1a, mIP  presents a 
higher median value for unresponsive states (RSS=6 and 
GAG 0) than responsive states (RSS<6 and GAG 1). 
These values are also reflected in reverse in the trends of 
the medSE _Req=0.1 (Fig. 1b). From the distributions 
shown in Figs. 1a and 1b, it can be deduced that the power 
in  frequency band increases and the complexity of the 
spectrum decreases when sedation level increases. The 
distribution of BIS values are shown in Fig. 1c.  

Tables II and IV show the Pk values and the sensitivity 
and specificity of the best single variables for both studies 
of RSS and GAG. It can be noted that  frequency band 
better characterizes the prediction of stimulus response for 
RSS and GAG. 

In order to increase the percentages of sensitivity and 
specificity, TFR variables were combined with BIS, CeRemi 
and CeProp. All combinations considered a maximum of 
four uncorrelated variables. Tables III and V show those 
variables that give the best classification percentages. The 
combination of TFR variables with BIS improves the 
efficiency of the prediction both RSS and GAG. 
Furthermore, the contribution of drug concentration to the 
prediction of stimulus response is different in RSS and 
GAG. Particularly, CeRemi improves the prediction in GAG 
study, while CeProp increases the efficiency in RSS study. 
 

TABLE II 
PRESENCE AND ABSENCE OF GAG REFLEX: ONE VARIABLE 

Variables Pk  Sen 
N=390 

Spe 
N=122 

mIP   0.7408 70.5  65.6 
medSE _Re0.1 0.7327 73.0 64.4 
BIS 0.7342 72.1  62.3 
minSEθ _Re0.2 0.6113 82.6 31.1 

           N= number of analyzed windows; Pk: prediction probability;  
          Sen: (%) sensitivity; Spe: (%) specificity; p-value<0.05 
 

TABLE III 
PRESENCE AND ABSENCE OF GAG REFLEX: MULTI VARIABLES 

Variables f(•) Pk Sen 
N=390 

Spe 
N=122 

BIS, mIP  0.7591 71.3  66.4 
BIS, medSE _Re0.1 0.7636 74.6  64.9 
mIP , medSE _Re0.1  0.7641 71.3 66.7 
CeRemi, mIP  0.7769 71.6 66.3 
CeRemi, mIP , minSEθ _Re0.2 0.7956 74.5 69.3 
BIS, CeRemi, mIP  0.8053 77.5 67.6 
BIS, CeRemi, mIP , minSEθ_Re0.2 0.8163 74.5 71.9 

        N: number of analyzed windows; Pk: prediction probability;  
        Sen: (%) sensitivity; Spe: (%)specificity; p-value<0.05 

IV. CONCLUSIONS 
Time-frequency representation (TFR) function was 

applied to one-minute windows of EEG signals recorded 
during endoscopy procedure in order to predict the pain 
response. Several variables were defined from (TFR) 
function. The statistical analysis of single variables has not 
permitted to obtain values of Pk>0.8 for RSS and Pk>0.75 

for GAG. In particular, the prediction of RSS decreased 
from trial1 to trial4.  

Values of prediction probability of Pk>0.75 and 
percentages of sensitivity above 70% and specificity above 
65 % could be achieved combining TFR functions with 
BIS. Concentrations of propofol (CeProp) and remifentanil 
(CeRemi) improve even better the prediction in RSS and 
GAG tests, respectively. However, this work represents a 
preliminary study about the advantages taken from the 
application of TFR function on the prediction of pain 
response during sedation.  

 

 
     (a) 

 
       (b) 

 
      (c) 

Fig. 1 Distribution of (a) mIP  , (b) medSE _Re0.1 and (c) BIS. On 
each box, the central mark is the median, the edges of the box are the 
25th and 75th percentiles. The whiskers are lines extending from each 

end of the boxes to show the extent of the rest of the data. Values beyond 
the end of the whiskers are considered outliers and marked with a  +. 
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TABLE IV 
RSS RESPONSE TO NOCICEPTIVE STIMULATION: ONE VARIABLE 

N1= number of analyzed windows RSS<6; N2= number of analyzed windows RSS=6; Pk: prediction probability; Sen: (%) sensitivity; Spe: (%) specificity; p-value<0.05 
 
 

TABLE V 
RSS RESPONSE TO NOCICEPTIVE STIMULATION: MULTI VARIABLES  

 trial1  
(N1=1822, N2=774) 

trial2  
(N1=1411, N2=774) 

trial3  
(N1=776, N2=774) 

trial4  
(N1=354, N2=774) 

Variables f(•) PK Sen Spe  PK Sen  Spe  PK Sen  Spe PK Sen  Spe  
BIS, minSETB_Re2 0.8060 75.6 68.9 0.7726 72.0 66.9 0.6977 67.7 62.0 0.6352 61.0 62.1 
mIP , medSE _Re0.1 0.7717 72.6 66.3 0.7423 72.4 62.8 0.6806 69.7 53.6 0.6433 65.8 48.4 
CeProp, mIP , medSE _Re0.1 0.7942 75.6 66.5 0.7652 74.2 63.7 0.6920 70.2 55.3 0.6455 67.4 48.1 
CeProp, mIPβ, maxSE _Re0.5 0.8066 75.1 69.6 0.7799 72.8 69.5 0.7020 65.5 62.9 0.6415 61.5 55.9 
BIS, CeProp, mIP , medSE _Re0.1 0.8074 73.3 71.8 0.7780 71.8 70.0 0.6916 65.9 63.0 0.6225 61.8 58.5 
BIS, CeProp, mIPβ, mSE _Re0.5 0.8301 77.2 70.0 0.8051 74.9 68.6 0.7292 69.4 63.6 0.6646 65.4 57.0 
N1: number of analyzed windows RSS<6; N2:number of analyzed windows RSS=6; Pk: prediction probability; Sen: (%) sensitivity; Spe: (%) specificity;  
p-value<0.05 
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