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Abstract— Delimitation and classification of each heart sound
is a rather difficult task. Elevated heart rates, as found in
pediatrics and in some adults as well, influence some of the
most reliable features used by existing methods. Furthermore,
in real life scenarios, cardiologists will not have the time to
acquire the signal’s length required by some of the existing
algorithms, which make us think that different approaches
ought to be pursued. This paper presents the work on heart
sound segmentation using structural and energy based features.
It is an attempt to not rely on features considered crucial to
most existing approaches. Yet, it achieves a high sensitivity and
specificity comparable to some literature.

I. INTRODUCTION

The latest numbers show that cardiovascular diseases
(CVD) are responsible for 47% of all deaths in Europe [1].
By the time an individual presents oneself at the hospital
with CVD symptoms, it is typically at an advanced stage of
the disease, which leads to a not very encouraging prognosis
involving expensive treatments.

A more pro-active approach involving cheap cardiac health
screening of the general population can help the physician
detect possible complications at an early stage. Currently,
two effective cardiac screening methodologies are the elec-
trocardiogram (ECG) and echocardiograms exams but these
can be expensive for mass screening and require technical
expertise that is not available to most health professionals.
Auscultation can be a powerful alternative to an ultrasound,
providing a cheap and simple methodology for assessing the
mechanical performance of the heart [2].

So far, heart sounds’ analysis has been of great help in
CVD diagnosis [3]. It is an inexpensive exam, the stetho-
scope is easy to carry and it can provide the physician
discriminative information. Nonetheless, a detailed analysis
of heart sounds requires a highly proficient cardiologist. With
the development of the electronic stethoscope, computer
aided auscultation systems have been built in order to process
recorded signals and provide decision support to the less
specialized physicians.

Segmentation of the phonocardiogram (PCG) onto the
different phases of a cardiac cycle is of the uttermost
importance. In a cardiac cycle we ought to find, at least, the
first and second heart sound - S1 and S2, respectively. Each
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of these heart sounds can later be processed and meaningful
features extracted to support a clinician’s decision. However
such a clean detection is hard to achieve due to the highly
uncontrolled noisy environments of health centers such as
hospitals and clinics. Furthermore, the discrimination be-
tween S1 and S2 is made more difficult due to the similarity
of some of their characteristics.

One of the most robust techniques to perform heart sound
segmentation is using ECG gating, as in [4], [5]. There is a
direct relationship between ECG waves and the heart sound’s
main components. Nevertheless, this approach requires a
synchronized ECG as reference, which is neither cheap
nor practical at the moment for a mass cardiac screening
objective. Therefore, much effort has been made to perform
heart sound segmentation without a reference signal. The
initial identification of possible candidates for the first and
second heart sounds usually employs some sort of signal’s
envelogram, like the averaged Shannon energy in [6], [7],
or homomorphic filtering [8], [9]. Afterwards, peaks are
detected and classified into S1 or S2. In this classification
process, it is standard to believe in physiologically inspired
criteria such as saying the diastolic period is longer than the
systolic, and that the systolic period remains reasonably con-
stant throughout the acquisition. This kind of features usually
involves requirements regarding the length of the acquisition
in order to estimate heart rates, compare different systolic
periods, etc. However, as reported in [10], an increased
heart rate influences those intervals. This is common in the
pediatric population and in some adult subjects. Moreover,
the presence of noise artifacts, that may resemble a heart
sound, has an effect on the whole classification. In such
cases, the use of these type of time intervals as features is
not viable.

This work’s starting point is the method proposed in [7],
[11], with which we find S1 and S2 candidates. However,
when it comes to the classification of said candidates, to the
extent of our knowledge, none of the work in the literature is
able to perform segmentation without relying on some sort of
physiological criteria based on systolic and diastolic periods.

Moreover, the introduction of the Teager energy operator
as feature on the phonocardiogram seems to be a relatively
recent subject. In fact, only recently have Fang et al [12]
used the Teager energy operator as a heart rate estimator. As
it seems, Teager energy has noteworthy characteristics that
makes it of interest when processing phonocardiograms.

The following section provides a detailed description of
the method proposed. Section III shows the results of the
algorithm given a publicly available dataset. Finally, section
IV concludes this paper with some final remarks and future
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work.

II. METHODS

The methods presented here are divided into three mod-
ules. First the heart sound is pre-processed and the possible
candidates for S1 or S2 are selected. Secondly, features for
each of the selected candidates are extracted. Finally, the
candidates are classified as one of the possible outcomes
(Figure 1).
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Fig. 1. Block diagram of the proposed algorithm.

A. Lobe selection

The lobe selection stage locates the heart sound, its
boundaries and disposes non-relevant lobes such as noise or
other artifacts’ fluctuations. The basis of our lobe selection
stage are the methods found in [7], [11]. Here, instead of
the discrete wavelet decomposition, we perform a stationary
wavelet transform decomposition. We found that by using the
latter we obtain more precise boundaries, with no time-shifts
or delays.

To find the best decomposition level, one ought to find
where most of the frequencies of the signal under study
reside. In [11], the authors define normal heart sounds
as below 600Hz, although the composition of the studied
population is not clear. In our study, we find that our best
results are using the 3rd − 0Hz to 500Hz− decomposition
level, which corroborates the above assumption.

To extract the envelope, an averaged Shannon energy
(eq. 1) was applied on the approximation coefficients. The
boundaries for each envelope’s peak are found by first
normalizing the envelope to mean 0 and standard deviation
of 1, and afterwards whenever the normalized envelope zero-
crosses, we mark the point as a candidate’s delimitation.

At this stage, we have more candidates than actual heart
sounds and some pruning is necessary. We have used some
of the rules created in [7] to validate the candidates. Specif-
ically, we have:

• The duration of a heart sound is no more and no less
than 200ms and 25ms, respectively;

• An interval between two heart sound candidates less
than 50ms may be a S2 split

Afterwards, each validated candidate moves to the feature
extraction stage.

B. Feature extraction

The features extracted are mostly energy based. Like in
[7], we are looking for the high frequency markers found
in S2. We have considered the Averaged Shannon Energy
(ASE) and Teager Energy. The former is a well established
PCG’s envelope extraction method, whereas the latter has
been used mostly in speech processing but because of the

aforementioned characteristics it seems reasonable to explore
its capabilities in PCG analysis.

The advantages of ASE are already explained in [6]. As
in [6], here we have computed ASE with a moving window
of .02 second and a .01 second of overlap (eq. 1).

ASE = − 1/N

N∑
i=1

x2
i log2(x

2
i ) (1)

where N is the length of the moving window and x is the
signal.

The other energy calculated is the Teager Energy (TE). It
is a non-linear measurement that can express the complexity
of the signal. As shown in [13], TE substantially magnifies
the high intensity parts of the signal. In fact, TE responds
quadratically to changes in the amplitude and frequency
of the signal [14]. Given the small differences, both in
amplitude and frequency, between S1 and S2, this quadratic
response can set the heart sounds apart. This, and the fact
that it only needs three samples and is extremely easy to
implement (eq. 2), makes it an extremely valuable asset.

TE(n) = x2
n − xn+1xn−1 (2)

where n is the sample being calculated, and x the signal
under study.

The only feature not based on the energy of the signal
compares the amplitude and width of each heart sound. The
reasoning behind this feature lies on the observation that
S2 has a larger amplitude than S1. The ratio between the
amplitude and width of each heart sound is computed.

A full list, with a brief explanation of each feature, is
provided:

• TE DETC - Teager energy is applied to the details
coefficients on the 3rd − 500Hz to 1000Hz− decom-
position level (Figure 2);

• SH TE DETC - An averaged Shannon energy is ap-
plied to TE DETC to smooth non-cardiac bursts to
which the TE is rather sensitive (Figure 3);

• TE SGN FILT - The signal is filtered with a 4th order
low-pass Butterworth and a cut-off frequency of 750Hz.
Afterwards, Teager energy is applied to the resulting
signal (Figure 4);

• ASP RATIO - Ratio between the amplitude and width
of the heart sound;

• SH APPC - The averaged Shannon energy envelope
applied on the approximation coefficients of the 3rd

decomposition level, determined to estimate the lobes
candidates, is used as feature as well (Figure 5);

Each candidate has its energy based features calculated by
eq. 3:

En Feature = 1/CL

CL∑
i

En(i)2 (3)

where CL is the length of the heart sound candidate and
En is one of each of the energy based features listed above.
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Fig. 2. Teager energy applied on the details coefficients of the 3rd

decomposition level (TE DETC).
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Fig. 3. ASE is applied to TE DETC to smooth non-cardiac bursts
(SH TE DETC).

C. Classification

To tackle the classification problem we group the candi-
dates in pairs and use a simple feature comparison system.
Here we assume that every S1 is followed by a S2 or vice-
versa. The rules are the following:

• RULE1 - TE DETCS1 < TE DETCS2;
• RULE2 - SH TE DETCS1 < SH TE DETCS2;
• RULE3 - TE SGN FILTS1 < TE SGN FILTS2;
• RULE4 - ASP RATIOS1 < ASP RATIOS2;
• RULE5 - SH APPCS1 ≥ SH APPCS2;
The first three rules exploit the high frequencies found

in S2 (as seen in figures 2, 3 and 4). As aforementioned,
Teager energy highlights this difference quite well with its
quadratic response of the frequency and amplitude of the
signal. The fourth rule tries to capture the difference in
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Fig. 4. Teager energy applied on the filtered signal (TE SGN FILT).
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Fig. 5. ASE envelope applied on the approximation coefficients of the 3rd

decomposition level (SH APPC).

amplitude between the two heart sounds. In all four cases,
we expect higher values in the S2 heart sound. Lastly, the
fifth rule is the averaged Shannon energy applied on the
approximation coefficients of the 3rd − 0Hz to 500Hz−
decomposition level, which means that since S1 has lower
frequency components, they will be portrayed as more promi-
nent (as observed in figure 5). In this case, one will be
looking for higher values in the S1 heart sound.

Following the diagram provided in figure 6, we can
observe each of the rules used on the top. The output of
a rule is binary, hence the [0|1] as in a regular expression
alike format. Each rule votes, with an equal weight, and the
majority decides whether the pair under scrutiny is an S1
followed by an S2 or vice-versa.

By grouping and classifying the candidates in pairs, we
are confining any transient noise or other artifact’s influence
to that specific location, letting the rest of the classification
unscathed.

Majority

Vote

RULE1 RULE2 RULE3 RULE4 RULE5

[0|1] [0|1] [0|1] [0|1] [0|1]

Majority LosesMajority Wins

S1 S2 S2 S1

Fig. 6. Majority voting process used to classify a pair of heart sounds.

III. RESULTS AND DISCUSSION

The performance of the proposed algorithm was assessed
using the publicly available PASCAL CHSC2011 dataset
[15]. Specifically, we have used samples from the dataset
B originated from clinical trials in hospitals using the digital
stethoscope platform DigiScope1. This dataset is mainly

1http://digiscope.up.pt/

2118



composed by acquisitions performed in a pediatric popula-
tion and with periods that vary between 1 and 30 seconds
and a sampling frequency of 4000Hz. We have not used
the dataset in its entirety since some of the files were not
adequately annotated. Nevertheless, it has the characteristics
of the dataset’s population and the samples’ length that
pose as challenges to most state of the art segmentation
algorithms.

Since the annotation is a temporal location of the heart
sound and we are actually interested in identifying not only
its location but also the boundaries of the heart sound, we
have considered a correct classification in those cases where
the annotated point is in between of the limits found.

The results are summarized in Table I where the proposed
algorithm is compared with a state of the art algorithm, [6].

Unlike the proposed algorithm, [6] performs a global
classification, i.e. the classification is done after the discovery
of the longest diastolic period, and this has repercussions
on the final classification whenever the signal does not
follow the common criteria. Aside from the sensitivity and
specificity values it is worth noting the difference in the
number of not classified heart sounds, where 73 heart sounds
are not classified because of the segmentation method used
in [6]. Moreover, on the proposed algorithm, 13 out of the
14 not classified heart sounds only exist due to the odd
number of heart sounds in some samples and the fact that
the classification is processed in pairs. So, in reality, only
one annotation was not classified.

Sensitivity Specificity Not Classified / Total
Proposed 92.8% 92.6% 14/850

Liang’s [6] 77.1% 78.3% 73/850

TABLE I
CLASSIFICATION’S RESULTS.

IV. CONCLUSIONS

Several segmentation methods for heart sound have been
proposed in the last decades. Nonetheless, the fact that the
heart sounds have such frail boundaries when it comes to
characteristics makes the task of discrimination between
different heart sounds rather difficult.

This work is an attempt to take a different approach on the
problem at hand and explore a set of features more focused
on structural properties of the heart sounds rather than the
periods of time that separate them.

The results, so far, have shown that this approach may
be quite promising. We have found out that Teager energy
provides reliable information regarding the qualities of both
heart sounds and as such is an useful asset in heart sound
segmentation. We wonder if this reliability is extended to
further steps in heart sound processing.

Given the simplicity of the algorithm, there is plenty of
room for improvement. Although we have mitigated the
effect of transient noises to their specific location, given
the classification approach used, they still remain a concern.
The inclusion of other features could add robustness to

the algorithm and starting to consider heart murmurs in
the segmentation process would turn the algorithm into
something more versatile.
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