
 

Functional Near-Infrared Spectroscopy based Discrimination of Mental 

Counting and No-Control State for Development of a Brain-Computer 

Interface 
 

Noman Naseer and Keum-Shik Hong, Senior Member, IEEE 

 
Abstract— In this paper we propose to apply functional 

near-infrared spectroscopy (fNIRS) to measure the brain 

activity during mental counting and discriminate it from the 

no-control (rest) state, which could potentially lead to a two-

choice brain-computer interface (BCI) application. fNIRS is a 

relatively new optical brain imaging modality that can be used 

for BCI. The major advantages using fNIRS are its relatively 

low cost, safety, portability, wearability and overall ease of use. 

In the present research, five healthy subjects are asked to 

perform mental counting during the activity period. Signals 

from the prefrontal cortex are acquired using  a continuous-

wave imaging system. The mental counting and no-control 

states are classified, using linear discriminant analysis (LDA), 

with an average accuracy of 80.6%. These classified signals can 

be translated into control commands for a two-choice BCI. 

These results show fNIRS to be a potential candidate for BCI.  

I. INTRODUCTION 

The aim of a brain-computer interface (BCI) is to allow 
people with locked-in syndrome to communicate with and 
control a computer or an external device through the process 
of thinking [1,2]. Methods of brain signal acquisition for BCI 
can be invasive and noninvasive. The invasive methods 
acquire brain signals by implanting electrodes into the gray 
matter of the brain in a surgical procedure while the 
noninvasive methods don’t used any surgical procedure for 
acquiring brain signals. In the previous studies, the 
possibility of multidimensional control over external devices 
has been shown using the invasive methods [2,3], however, 
the same is still a challenge using noninvasive methods. 
Some of the non-invasive brain-imaging modalities are 
Functional Magnetic Resonance Imaging (fMRI), Positron 
Emission Tomography (PET), Electroencephalography 
(EEG), Magnetoencephalography (MEG), Single Photon 
Emission Computed Tomography (SPECT) and Functional 
Near-Infrared Spectroscopy (fNIRS).  fMRI and fNIRS give 
information about the hemodynamic changes caused by the 
neural activity in the cortical regions of the brain while PET 
and SPECT quantify radioactivity concentrations to provides 
information about the brain activity. We choose fNIRS for 
brain signal acquisition because of its advantages of being 
safe, portable, wearable and cheap. The measurement 
principle of fNIRS was first reported in 1977 by Jobsis [4]. 
Since then, although it has been used to study the cerebral 
hemodynamic, it is being studied for BCI in the last few 
years only [5,6,7,8,9]. 
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In this research we measured and classified brain activity 
as “mental counting” and “no-control” during mental 
counting task. The two states were decoded with an average 
classification accuracy of 80.6% using the linear 
discriminant analysis (LDA). 

 
II.  MATERIAL AND METHODS 

A. Signal Acquisition 

fNIRS uses the light in the near infrared range (650 nm 

~ 1000 nm) that can penetrate in the human tissues. A near-

infrared light emitter is used to incident light on the scalp. 

The light induced travels through the head having multiple 

scattering and passes through the cortical areas of the brain 

where oxy-hemoglobin (HbO) and deoxy-hemoglobin 

(HbR) are present. HbO and HbR absorb light with different 

absorption coefficients for different intensity of light as 

shown in Fig. 1. Some of the photons, reflected back after 

scattering and absorption by the HbO and HbR, are detected 

using a detector placed on the scalp. The modified Beer-

Lambert law is then used to calculate the changes in 

concentration of HbO and HbR.       
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where          is the optical density variation of HbX in 

µMmm,        ) (j =1,2) is the unit-less total optical 

density variation of the light emitter of wavelength   , 

       ) is the extinction coefficient of HbX in µM
-1

mm
-1

, 

d is the unit-less differential pathlength factor, and l is the 

distance (in millimeters) between emitter and detector. 

We used continuous wave NIRS system DYNOT 

(Dynamic Near-Infrared Optical Tomography), at a 

sampling rate of 1.81 Hz to acquire brain signals. This 

system was obtained from NIRx medical technologies, LLC, 

New York. The system uses near-infrared lights of two 

wavelengths i.e. 760 and 830nm shown in Fig. 1. Both 

wavelength lights were used to get the concentration 

changes of HbO and HbR. 

 

 
 

Figure 1.  Absorption coefficients, of HbO and HbR, for different 

wavelengths of near-infrared light. 
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B. Subjects 

Five subjects (mean age: 30.2 ± 2.38) participated in the 

experiments. None of them had a history of any psychiatric, 

neurological or visual disorder. All of them had normal or 

corrected-to-normal vision, and they all provided verbal 

informed consent. The experiments were performed in 

accordance with the latest Declaration of Helsinki. 

 

C. Optode Placement 

Two emitters and six detectors were placed on the 

prefrontal cortex of all subjects to measure the brain signals. 

The optode placement and channel configuration is shown 

in the Fig. 2. The red-filled squares represent the two 

emitters and the circles represent the 6 detectors used. The 

selected channels with the emitter-detector separation of 3 

cm, considered for the analysis, are numbered. The source-

detector distance of 3 cm was used is in accordance in the 

literature [10]. The channels with an emitter-detector 

distance of more than 3 cm were discarded as they might not 

contain useful information because of their high emitter-

detector separation.  

 

D. Experimental Paradigm 

The subjects were seated in a comfortable chair facing a 

monitor placed at a distance of 65-70 cm. During the 

activity period, they were asked to mentally count the 

number of times a screen is changed on the monitor. The 

experimental sequence illustrated in Fig. 3 is explained 

below: 

 

1. The first 20 s was a rest period to set up the 

baseline conditions. 

2. In the next 20 s the subjects were required to 

perform mental counting. 

3. The last 20 s was again a rest period to settle the 

signal values to baseline. 

The above sequence was repeated 20 times for each 

subject. The total duration of the experiment for each 

subject was hence 800 s. Each subject performed five 

trials.  

 

 

 
 

Figure 2. Optode placement and channel configuration. 

 

 

 

E. Signal Processing and Classification 

The raw intensity signals contain high frequency 

components such as heart beat [11]. To remove these, low-

pass filtering was done on the raw intensity signals using the 

signal processing toolbox of Matlab. After filtering, the 

signals were normalized by dividing the signals with the 

mean of the baseline signals over one trial. Using (1) and 

(2), ΔHbO and ΔHbR was then calculated. After filtering 

and normalization, the classification was carried out on the 

HbO and HbR signals. The objective of classification is to 

classify the subjects’ state as “mental counting” and “no-

control”. Linear discriminant analysis (LDA) was used as 

the classifier. LDA is a linear classifier which uses hyper 

planes to discriminate between the data that represent two 

different classes. The values of concentration changes in 

HbO and HbR from the selected channels (having source-

detector distance of 3 cm) for specific time points (activity 

period) were used as features to the classifier. Table I shows 

the average classification accuracies of all subjects over five 

trials. 

III.   RESULTS 

 

The normalized and filtered signals, of change in 

concentration of HbO and HbR, are shown in Fig. 4. It can 

be seen that the concentration change in HbO was higher 

during the activity period from 20 s to 40 s than during the 

rest periods. The classification accuracy using the LDA for 

the mental counting, averaged over all channels and for all 

subjects, was 80.6% as shown in the Table I. The lowest 

average classification accuracy was found to be 79.4% for 

Subject 1 while the highest one was 82.1% for Subject 5. A 

two-dimensional feature space for subjects 2 and 5 are 

shown in Fig. 5 and Fig. 6 respectively. The red crosses 

indicate the mental counting while the blue circles indicate 

the no-control state. The blue line represents the decision 

boundary between the mental counting and no-control 

states.  

 

 

 

 
Figure 3. Experimental paradigm: The two blue box at the beginning and 

at the end show 20 s rest period while the red box in the middle shows the 
20 s mental counting period. 
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Table I. 

 LDA CLASSIFICATION RESULTS FOR THE EXPERIMENT 

 

IV.   DISCUSSIONS 

 

In this research we successfully decoded brain state as 

“mental counting” or “no-control” for mental counting 

experiments with an average classification accuracy of 

80.6% across five subjects. This result shows the feasibility 

of using fNIRS for BCI.  

An important factor to be noted is that all the subjects of 

this investigation were healthy. The hemodynamic response 

of people with amyotrophic lateral sclerosis, tetraplegia or 

other motor or speech impairments can differ from those of 

healthy subjects, which can result in relatively low 

classification accuracies. 

In our previous study [12], it was shown that using 

fNIRS, it is possible to decode the “active” and “rest” states 

with an average classification accuracy of 73.6% for a 

finger tapping experiment. A source-detector distance of 

2.12 cm was used and average values of concentration 

change in HbO and HbR were used as features. In this 

study, however, by using a source-detector separation of 3 

cm and more enhanced feature, concentration changes of 

HbO and HbR from the selected channels for specific time 

points, higher classification accuracies are achieved.  

         

 
 
Figure 5. Two-dimensional feature space for Subject 2 for the experiment: 

The crosses indicate the mental counting and the circles indicate the no-
control state. 

 

 

 
Figure 4. Concentration changes in HbO and HbR signals for the 

experiment. (Channel 4, Subject 3). 

 

 

The classification accuracies can be further increases 

using different classifiers, different features and adaptive 

filtering techniques [13,14]. 
 

V.  CONCLUSIONS 

 

In this research we showed that it is possible to 

discriminate, with high classification accuracy, between the 

brain signals due to mental counting and no-control state 

using fNIRS. The classified signals can then be translated 

into control commands for a two-choice BCI. The results of 

this research successfully prove fNIRS to be a potential 

candidate for BCI applications. In future we aim to go one 

step further from binary classification to multiple 

classifications of different brain activities to achieve 

multidimensional control of external devices such as robots 

or other prosthesis devices. 

 

 

 
 
Figure 6. Two-dimensional feature space for Subject 5 for the experiment: 

The crosses indicate the mental counting and the circles indicate the no-
control state. 

 

 

Subject                    Trial                    

  1 2 3 4 5 Average 

1 82.1% 76.8% 79.2% 81.0% 78.2% 79.4% 

2 78.3% 84.2% 80.2% 79.2% 83.3% 81.0% 

3 79.8% 77.5% 82.1% 79.3% 83.2% 80.3% 

4 82.5% 80.5% 78.2% 80.7% 81.5% 80.6% 

5 85.2% 82.1% 80.2% 79.0% 84.1% 82.1% 

            80.6% 
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