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Abstract— The advent of Comparative Genomic Hybridiza-
tion (CGH) data led to the development of new mathematical
models and computational methods to automatically infer
chromosomal alterations. In this work we tackle a standard
clustering problem exploiting the good representation prop-
erties of a novel method based on dictionary learning. The
identified dictionary atoms, which show co-occuring shared
alterations among samples, can be easily interpreted by domain
experts. We compare a state-of-the-art approach with an
original method on a breast cancer dataset.

I. INTRODUCTION

Multifactorial pathological conditions, as tumors, are often
associated to structural and numerical chromosomal aberra-
tions. The cell loses or varies its function when one or more
sections of its DNA has an abnormal number of copies or
copy number variations (CNVs). Array-based Comparative
Genomic Hybridization (aCGH) is a modern whole-genome
measuring technique that evaluates the occurrence of copy
variants across the genome of samples (patients) versus
references (controls) on the entire genome, extending the
original CGH technology [1]. Modern high-resolution aCGH
allows for the identification of numerical and structural
aberrations or rearrangements.

A signal measured with an aCGH consists of a piecewise
linear (and constant) component plus some noise. The typical
statistical analysis on such data is the automatic detection of
altered recurrent aberrations, that may indicate an oncogene
or a tumor suppressor gene. The method should possibly
exploit the intrinsic data structure to improve the downstream
analysis. Indeed, recent advances in aCGH analysis are
based on multi-sample regularization methods for a joint
segmentation of many aCGH profiles with the simultaneous
detection of shared change-points across samples [2].

The models proposed by [3] and [4] follow this stream,
minimizing a functional based on total variation (TV ) or
fused lasso signal approximation. We developed CGHDL, a
dictionary learning based method [5], which is an extension
of the model proposed by [3], called FLLat. The main aim
of such methods is to obtain a denoised version of the input
data as well as a representative dictionary of atoms each con-
taining a meaningful common pattern of genomic alterations.
Our model provides a more biologically sound representation
of aCGH data thanks to the combination of more complex
penalties that explicitly exploit the structured nature of aCGH
signals. Despite having a less simple model, we obtain atoms
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that possibly capture co-occurrences of CNVs across samples
leading to results that are more easily interpretable by the
domain experts. Moreover, our proposed model is able to
deal with signals spanning the entire genome, whereas FLLat
in [3] takes into account one chromosome at a time. In
dictionary learning, the original signal is approximated by a
linear weighted combination of the atoms, i.e., the elements
of the dictionary. In our model, we assume that each sample
uses just some atoms enforcing sparsity on the coefficient
matrix, which is used as the new representation of the input
data.

We take into account a clustering problem on a breast
cancer dataset comprising three different grades and, first,
we compare the clustering properties of CGHDL, FLLat and
the raw signals on two separated chromosomes. Then, we
show CGHDL clustering properties on the entire genome
and we also show how coefficients obtained by CGHDL on
the entire genome can be considered a good representation
of the data.

In the remainder of the paper we illustrate the model
discussing the choice of each penalty, and then we present
the experimental setting and the obtained results.

II. CGHDL: A NEW MODEL FOR ACGH ANALYSIS

We are given a data matrix Y ∈RL×S. The goal is to seek
a matrix B ∈ RL×J of J simple atoms which possibly give
a complete representation of all samples, in the sense that
Y u Ŷ = BΘ for a matrix of coefficients Θ ∈ RJ×S.

In [3], the proposed model follows:

min
Θ,B

1
2
‖Y −BΘ‖2

F +λ

J

∑
j=1
‖B(:, j)‖1 +µ

J

∑
j=1

TV (B(:, j))

s.t. ‖Θ( j, :)‖2
2 ≤ 1 ∀ j = 1, . . . ,J.

(1)

The ‖·‖1 penalization term forces each atom B(:, j) to
be sparse and the total variation term TV (B(:, j)) =

∑
L−1
l=1 |B(l +1, j)−B(l, j)|, induces small variations in the

atoms. The hard constraints on the coefficients Θ( j, :) are
imposed for consistency and identifiability of the model.
Indeed, multiplying a particular feature B(:, j) by a constant,
and dividing the corresponding coefficients by the same
constant leaves the fit unchanged, but reduces the penalty.

Our model minimizes the following problem:

min
Θ,B

1
2
‖Y −BΘ‖2

F +λ

J

∑
j=1
‖B(:, j)‖2

1 +µ

J

∑
j=1

TVw(B(:, j))

+ τ

S

∑
s=1
‖Θ(:,s)‖2

1

s.t. 0≤Θ( j,s)≤θmax, ∀ j = 1, . . . ,J ∀s = 1, . . . ,S.
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The reconstruction term is penalized with three penalties,
based on the biological and structured nature of the data at
hand.

The ‖·‖2
1 penalization term on the matrix of atoms B forces

each atom B(:, j) to be sparse, and gives a structured sparsity
along its columns.

The weighted total variation term TVw(B(:, j)) =

∑
L−1
l=1 wl |B(l +1, j)−B(l, j)|, induces small variations in the

atoms with properly chosen weights wl . The weighting
schema is introduced in order to relax at some points the
constraint of small jumps on the atoms. Actually, we will use
weights that are always 1 with some sparse exceptions, where
wl is 0, in correspondence of chromosomes boundaries where
the constraint does not have a biological motivations. This
allows to treat signals composed by several chromosomes as
a whole, but still guaranteeing an independent analysis for
each chromosome. This ensures the capability of identifying
concomitant alterations occurring on different chromosomes.

The ‖·‖2
1 penalization term on the matrix of coefficients

Θ induces sparsity along the set of weights associated
to each sample separately. This permits to regulate how
much different atoms each sample can combine in order to
reconstruct the original signal.

The coefficients are constrained to be bounded and posi-
tive. This reduces the complexity of the matrix of coefficients
Θ and forces the matrix of atoms B to be more informative:
e.g., for deletions and amplifications occurring in different
samples but on the same locus on the chromosome, different
atoms may be selected.

A. Alternating prox minimization algorithm

To solve the minimization, we use a proximal alternating
algorithm, as studied in its generality in [6]. We set Y , B and
Θ as the matrices of data, atoms and coefficients respectively,
and introduce the partial functions:

ϕB(Θ) =
1
2
‖Y −BΘ‖2

F +δ∆S×J (Θ)+ τ

S

∑
s=1
‖Θ(:,s)‖2

1

ψΘ(B) =
1
2
‖Y −BΘ‖2

F +λ

J

∑
j=1
‖B(:, j)‖2

1 +µ

J

∑
j=1

TVw(B(:, j)),

(2)
where δ∆S×J is the indicator function of the box set ∆S×J =
[0,θmax]

S×J . Then, the alternating proximal algorithm is as
follows:

Θk+1 = proxηkϕBk
(Θk), ηk > 0 ,

Bk+1 = proxζkψΘk+1
(Bk) , ζk > 0 .

(3)

In (3), proxηϕB
and proxζ ψΘ

denote the proximity operators
with respect to the partial functions (2). They can be com-
puted approximately, by a duality based (inner) algorithm,
with a given and controlled precision [7].

B. Parameter selection

The choice of the parameters (λ ,µ,τ) is done according
to the Bayesian information criterion (BIC) [8]. The BIC
mitigates the problem of overfitting by introducing a penalty

term for the complexity of the model. In our case the BIC
is written as:

(SL) · log
(‖Y −BΘ‖2

F
SL

)
+ k(B) log(SL)

and k(B) is computed as the number of jumps in B and
ultimately depends on the parameters (λ ,µ,τ). Note that
the reconstruction accuracy increases with J, but our aim
is not achieving a perfect fit, rather is detecting the relevant
alterations. In this context, the value of J may be chosen
keeping in mind the compromise between model complexity
(smaller J) and reconstruction accuracy (higher J).

III. EXPERIMENTS

To better understand the underlying properties of the
learned dictionary and coefficients by FLLat and CGHDL,
we refer to [5] for preliminary results on synthetic generated
data.

In this paper, we considered the aCGH dataset from [9],
already used by [3] to test FLLat on real data. The dataset
consisted of 44 samples of advanced primary breast cancer.
Each signal measured the CNV of 6691 human genes. The
samples were assigned to 3 classes according to tumor
grading: 5 samples were assigned to grade 1, 21 to grade
2, 17 to grade 3 and 1 unassigned.

The aim of our experiments is to prove that CGHDL
allows for a more informative representation of the data
in terms of main shared patterns of alterations. In order
to demonstrate this hypothesis we performed two different
experiments: first we would like to demonstrate that CGHDL,
even if more complex than FLLat, is able to extract useful
information in a chromosome-by-chromosome analysis; then
we performed an experiment considering all the chromo-
somes at the same time and showed how CGHDL can extract
all the meaningful genomic alteration providing an overall
informative result.

In the first experiment we compared CGHDL and FLLat
focusing on chromosomes 8 (241 mapped genes) and 17
(382 mapped genes), identified by [9] as chromosomes with
biologically relevant CNVs. Clustering was performed on
Y c, the original raw noisy data matrix restricted to the
chromosome c ∈ {8,17}, on coefficients matrices Θc

cghdl and
Θc

f llat , and on the denoised samples matrices Ŷ c
cghdl and Ŷ c

f llat .
As explained in Section II, FLLat cannot analyze an

aCGH signal along the entire genome due to the unweighted
total variation included into its model, therefore, in the
second experiment, we compared the results of CGHDL with
a clustering procedure on the raw dataset (6691 probes).
Clustering was performed on the original raw noisy data
matrix Y , on the coefficients matrix Θcghdl and the denoised
samples matrix Ŷcghdl calculated by CGHDL.

For clustering, we adopted a hierarchical agglomerative
algorithm, using the the city block or manhattan distance
between points d(a,b) = ∑i |ai− bi| and the single linkage
criterion d(A,B) = min{d(a,b) : a ∈ A,b ∈ B} [10]. The
cluster A is linked with the cluster B if the distance d(A,B)
is the minimum with respect to all the other clusters B′.
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Fig. 1. Average cophenetic distances for the groups G1, G2 and G3 on chromosome 17 (left) and chromosome 8 (right). CGHDL always has better
clustering results (see also Tables I and II). Moreover, is also interesting to note that clustering the denoised samples by CGHDL and FLLat, the former
has better results, suggesting also an higher quality of the dictionary atoms used to reconstruct the samples.

The manhattan distance allows us to calculate a point-
wise difference both for the coefficients vectors and the
raw/denoised aCGH signals.

Moreover, to evaluate the coherence of the obtained den-
drogram with respect to the groups G1, G2 and G3, we
measured the cophenetic distance among the samples within
each group [11]. For each pair of observations (a,b), the
cophenetic distance is the distance between the two clusters
that were merged to assign the two points in a single new
cluster. The average of the cophenetic distances within each
clinical group provides an objective measure of how the
resulting dendrogram “describes” the differences between
observations, using the clinical grades as ground truth.

Note that, by design, the values contained into the coef-
ficients matrix produced by FLLat and CGHDL could have
different range of values (in CGHDL the values are positive
and bounded). In order to calculate comparable distance met-
rics, before clustering and cophenetic distances evaluation,
each estimated coefficients matrix Θ was normalized by is
maximum absolute value. The same preprocessing was also
applied on the original aCGH signals and on the estimated
ones Ŷ = BΘ.

IV. RESULTS

Both FLLat and CGHDL choose the optimal parameters
over a grid using a BIC-based searching algorithm. In
particular, for FLLat the grid was defined by some heuristics
implemented into the given R package. The parameter θmax
in CGHDL was set to 1.0. This choice forces the algorithm
to find atoms with signal amplitude comparable with the
original data.

A. Analysis restricted to chromosomes 17 and 8

In Figure 1 (left) we show the means of the cophenetic dis-
tances calculated for each group of samples (the unannotated
one was not considered) restricted to the chromosome 17. In
this experiment, following [3], we fixed J = 5 and initialized
B with the first 5 principal components of the matrix Y .

G1 G2 G3
Θ17

cghdl 0.008±0.004 0.079±0.112 0.111±0.124
Ŷ 17

cghdl 0.022±0.019 0.476±0.720 0.687±0.795
Θ17

f llat 0.178±0.044 0.265±0.173 0.517±0.446
Ŷ 17

f llat 1.737±0.484 2.945±2.074 5.212±3.851
Y 17 19.284±2.374 19.589±3.961 23.941±5.870

TABLE I
AVERAGE COPHENETIC DISTANCES AFTER CLUSTERING FOR THE

ANALYSIS RESTRICTED TO CHROMOSOME 17

We searched, for CGHDL, the best triple of parameters
in µ ∈ {0.01,0.1,1.0,10,100}, λ ∈ {0.01,0.1,1.0,10,100}
and τ ∈ {0.1,1.0,10}. It is clear that the clustering on the
coefficients matrix produced by CGHDL places the samples
belonging to homogeneous clinical groups (G1, G2 and
G3) closer in the dendrogram. Moreover, also the denoised
data matrix Ŷ 17

cghdl shows better discriminative performances
with respect to Ŷ 17

f llat . This may be due to the capability of
our model to better detect the main altered patterns in the
signals, despite a possibly higher reconstruction error [5].
Such property ultimately induces a more effective clustering.
In Table I we report a summary of the averaged cophenetic
distances, also including the clustering on raw signals.

The analysis on chromosome 8 gives similar results.
Following [3], we fixed J = 6, initialized B with the first
6 principal components of the matrix Y and searched, for
CGHDL, the best parameters in µ ∈ {0.01,0.1,1.0,10,100},
λ ∈ {0.01,0.1,1.0,10,100} and τ ∈ {0.1,1.0,10}. Figure 1
(right) shows the means of the cophenetic distances calcu-
lated for each group of samples, and Table II shows the
corresponding averaged cophenetic distances.

B. Whole genome analysis

We ran the experiments with three different J ∈
{10,18,24} which correspond to the number of principal
components of Y able to explain respectively the 50%, 70%
and 80% of the variance. Than we searched the best param-
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G1 G2 G3
Θ8

cghdl 0.016±0.007 0.054±0.024 0.147±0.142
Ŷ 8

cghdl 0.222±0.095 0.842±0.410 1.720±1.135
Θ8

f llat 0.301±0.095 0.469±0.236 0.951±0.657
Ŷ 8

f llat 3.135±1.090 4.962±2.605 9.547±6.638
Y 8 12.363±1.165 15.484±4.124 20.150±6.200

TABLE II
AVERAGE COPHENETIC DISTANCES AFTER CLUSTERING FOR THE

ANALYSIS RESTRICTED TO CHROMOSOME 8

Fig. 2. Profiles of the first 4 more used atoms for sample reconstruction
(sum of the row of Θ) extracted by CGHDL on all chromosomes. The
atom #1 maps a general pattern of alterations, and it is responsible of
a high proportion of signal reconstruction. CGHDL found the alterations
on chromosomes 8 and 17, and also detected co-occurring alterations on
chromosomes 3 and 5. Vertical lines indicate chromosomes boundaries.

eters µ ∈ {0.01,0.1}, λ ∈ {0.01,0.1} and τ ∈ {0.01,0.1}.
Here, we present the results obtained with J = 10: the re-
sulting atoms (see Figure 2) describe co-occurrent alterations
along different chromosomes but are still fairly simple for
a visual interpretation by the domain experts. For different
Js we did not note relevant differences in terms of fit and
clustering.

It is important to note that the four more used atoms of
the dictionary extracted by CGHDL detect the main genomic
alterations on chromosomes 8 and 17 as well as a co-
occurrence of deletions on chromosome 3 and 5. In [9] all
these alterations were already indicated as very common but
the relation between chromosomes 3 and 5 was not indicated
as co-occurrence and needs further biological validation.

V. CONCLUSIONS

In this paper we presented a novel method for aCGH
data analysis and compared our result with a state-of-the-
art method. We demonstrate the good properties of CGHDL
for representing aCGH signals (coefficients) and extracting
relevant information (atoms). The clustering results were

Fig. 3. Average cophenetic distances for the groups G1, G2 and G3 on all
chromosomes and J = 10. See also Table III

G1 G2 G3
Θcghdl 0.738±0.541 0.290±0.213 0.463±0.406
Ŷcghdl 7.988±4.663 4.191±2.795 5.512±3.632
Y 305.76±39.85 290.26±38.04 302.86±34.76

TABLE III
AVERAGE COPHENETIC DISTANCES AFTER CLUSTERING FOR THE

ANALYSIS EXTENDED TO ALL CHROMOSOMES WITH J = 10

validated using clinical grading as ground truth. We expect
to apply the method on higher resolution aCGH data and
possibly validate the ability to extract meaningful CNVs to
give the domain experts an effective method to understand
underlying biological processes.
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