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Abstract— A crucial step in studying brain connectivity is
the definition of the Regions Of Interest (ROI’s) which are
considered as nodes of a network graph. These ROI’s identified
in structural imaging reflect consistent functional regions in the
anatomies being compared. However in serial studies of the
developing fetal brain such functional and associated structural
markers are not consistently present over time. In this study
we adapt two non-atlas based parcellation schemes to study
the development of connectivity networks of a fetal monkey
brain using Diffusion Weighted Imaging techniques. Results
demonstrate that the fetal brain network exhibits small-world
characteristics and a pattern of increased cluster coefficients
and decreased global efficiency. These findings may provide
a route to creating a new biomarker for healthy fetal brain
development.

I. INTRODUCTION

The brain can be considered as a network of highly in-
terconnected small regions. Therefore studying its structural
connectivity can help provide a better understanding of the
organization of the brain. Recently, non-invasive techniques
such as diffusion-weighted MRI have been used to study
structural connectivity in adults and infants which have led
to the discovery of small-world characteristics of the brain
[1][2]. More recently, Fan [3] studied the brain network
of healthy pediatric subjects at ages of 1 month, 1 year
and 2 years, and identified the development of small-world
topologies in this early period of development.

An important step in these studies is the partitioning of
the brain into functional regions of interest (ROI’s) between
which connectivity is evaluated. The adult and pediatric brain
parcellation schemes focus on dividing the cortex into units
that represent known functional divisions often defined in
MRI by the presence of cortical folds or sulci and gyri.
However in the developing fetal brain such units may not
be present at a given gestational age and their structural
correlates in the form of sulci and gyri are not developed. In
order to study early brain growth we therefore must develop
a connectivity mapping methodology that is independent of
cortical folding and its rapid change over time. A very recent
structural connectivity study [4] of neonatal brains used
two automated methods for parcellating the brain surface,
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i.e., (1) the brain was partitioned using 3D regular lattice
into spatial regions of equal spatial extent along the x,
y, and z axes of the imaging volume, and (2) derived
subcortical surface was divided based on Recursive Zonal
Equal Area Sphere Partition. However, for serial studies of
growth over time these approaches create partitions which
can have inconsistencies in region areas as the brain grows.
The first method may break regions unexpectedly and results
in large differences in ROI sizes, especially when the number
of ROI’s increases. In addition to cortical partitioning, in
the fetus we are also interested in dividing the developing
cerebral mantle. Unfortunately, the second method which is
basically surface projection cannot be applied here. Hagmann
[5] used a two phase random parcellation method to study
the adult brain structural connectivity. However the number
of ROI’s cannot be pre-determined in this method. This is a
limitation in the case where one is interested in performing
a controlled analysis of network by varying the number of
nodes systematically.

Rather that assuming a specific functional and anatomical
correspondence over time from which to derive connectivity
measures as the brain rapidly develops, here we explore
approaches that simply aim to sample that anatomical or
functional pattern and its connectivity in a way that allows
us to evaluate spatial connectivity as the brain grows. As
with any imaging process, sampling of spatial data can be
achieved using different schemes. Here we explore adap-
tations of regular and random sampling with the aim of
ensuring consistency of anatomical sampling over time. We
use animal imaging data (the Macacque monkey) as a basis
for this study as it provides a high quality reference not
currently available in normal human studies.

II. MATERIALS AND METHOD
A. Data Acquisition

We acquired a dataset consisting of both T2-weighted
and Diffusion Weighted Imaging (DWI) data of an in-vivo
monkey fetus at gestational ages of 85, 110 and 135 days
from a 3T Siemens scanner. The T2-weighted data consists
of 12 scans with a resolution of 0.667 × 0.667 × 1mm,
TE = 97ms, TR = 9900ms. The DWI data consists of
3 scans, each containing 27 stacks (9 axial, 9 sagittal and
9 coronal) with a resolution of 1.125 × 1.125 × 3mm, 20
diffusion weighted directions, b = 500s/mm2, TE = 93ms
and TR = 5000ms.
B. Data Preprocessing

The T2-weighted multi-slice acquisitions were motion
corrected and reconstructed to isotropic 0.5mm voxels with
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(a) random parcellation

(b) regular parcellation

Fig. 1. Parcellation Algorithm Overview: different steps in (a) random
parcellation, and (b) regular parcellation.

the approach described in [6]. All the DWI acquisitions were
motion corrected and reconstructed to a rank 2 tensor with an
isotropic spatial resolution of 0.75mm [7], which was then
registered to the reconstructed T2-weighted volume and up-
sampled to the same resolution as T2-weighted volume. The
T2-weighted image was segmented into two basic regions:
the cortical plate and cerebral mantle. The cerebral mantle
here included subplate, intermediate zone, deep grey matter
and germinal matrix.

C. Region Partition

We consider 2 types of parcellation schemes whose steps
are shown in Fig. 1:

1) Random parcellation: A number of seed points are
randomly generated within the mask followed by region
growing, where all voxels in the mask are assigned to the
nearest seed point. To avoid trivial ROI’s whose size would
be much lower than that of others, a distance threshold
was used to make the random seed points well distributed
when they were generated. This ensured that the distance
between any pair of seed points was above the threshold.
An appropriate threshold is selected by first creating the
partitioning with a high value and reducing this until the
required number of seed points is generated.

2) Regular parcellation: All volumes (T2-weighted, DTI
and mask) were manually transformed to standardize the
axial orientation and centering. A bounding box of the mask
was calculated and then divided into cuboids of equal size.
These cuboids were then assigned an integer index derived
from their x, y, z locations in the image space. The individual
image voxels within the brain mask were then assigned label
values corresponding to the index of the cuboid they were in.
The assignment may result in small boundary ROI’s when
the mask is irregular, whose connection to other ROI’s can
be meaningless. Therefore, ROI’s whose sizes were smaller
than a predefined threshold were merged into its nearest ROI
recursively until the sizes of all ROI’s were larger than the
threshold.

Compared to the regular parcellation scheme, the random
parcellation scheme has several advantages. In particular, it
allows more direct control over the number of ROI’s within
the brain mask and avoids the creation of trivial ROI’s at
the brain boundary when the brain shape becomes more
complex. For random parcellation, we repeated the exper-
iments 40 times for each number of ROI’s to specifically

examine the consistency as the sampling of the functional
regions is varied. We also varied the number of ROI’s in both
parcellation schemes to examine its effect on the connectivity
measures. Specifically, we partitioned the cerebral mantle
into ROI’s of which the number varies from 60 to 140
in subcortical connectivity study. In cortical connectivity
study, we partitioned the cortical plate into ROI’s of which
the number ranges from 30 to 65 only using the random
parcellation.

D. Tractography

Whole-brain streamlined fiber tractography was performed
with the deterministic Fiber Assignment by Continuous
Tracking (FACT) algorithm [8], using a mask consisting of
the sub-plate, cortical mantle, deep grey matter and germinal
matrix segmented from the reconstructed T2-weighted vol-
ume. A maximum turning angle of 45o, a minimum fractional
anisotropy (FA) of 0.08 and a tracing step size of 0.1 voxel
were chosen. This step recovers the fiber tracts in the white
matter.

E. Network Graph Analysis

The unweighted connectivity network graph was con-
structed using the ROI’s resulting from the parcellation as
nodes. Two nodes are considered connected if there exists
at least one fiber connecting them. The unweighed graph
is also represented as an binary adjacency matrix AN×N ,
where N is the number of ROI’s and Aij = 1 if the i-th
and j-th node are connected and 0 otherwise. Small-world
analysis was applied to the graph which involved computing
measurements of segregation (cluster coefficient) and inte-
gration (global efficiency) [9] and comparing these metrics
to those of a randomized network with the same number of
nodes and degree distribution. The cluster coefficient (C) and
global efficiency (E) are defined as :
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where Ci is the cluster coefficient and ki is the degree of
the node i, ti is the number of triangles formed by the
neighbouring nodes of node i, Ei is the global efficiency
of node i, dij is the number of nodes along the shortest path
from node i to node j, n is the total number of nodes in the
node set N .

Small-world networks are characterized by dense local
clustering of connections between neighbouring nodes and
short path lengths between any pair of nodes due to the
existence of relatively few long-range connections [10].
Thus, its clustering coefficient is much larger than that of
a randomized network (C >> Crand), while its global
efficiency is slightly smaller (E < Erand).

III. RESULTS
We performed both subcortical and cortical connectivity

studies on the acquired data.
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Fig. 2. 3D surface renderring of partitioned brains at all 3 time points
using both random and regular parcellation schemes.

Subcortical connectivity

Fig. 2 shows an example of partitioning the same brain
(cerebral mantle) at all 3 ages using both regular and random
parcellation schemes. Fig. 3 shows the traced fiber tracts
connecting cortical ROI’s at all 3 time points, which are
colored by the FA map and overlaid on the corresponding T2-
weighted images. We then constructed the brain connectivity
network graph for each dataset based on the ROI’s and all
traced fiber tracts.

We performed small-world analysis on the extracted
graphs. From Fig. 4(a,b), we can see that the cluster co-
efficient of subcortical connectivity networks is much larger
than that of the random networks while the global efficiency
is slightly smaller, indicating that these networks both exhibit
small-world characteristics. Both the cluster coefficient and
the global efficiency increase as the brain develops. Fig.
4(c,d) indicates that these network properties are robust
to parcellation schemes and different numbers of ROI’s to
partition. However, the number of ROI’s should not be too
small to better reveal the development of the fetal brain
connectivity network, especially for global efficiency of the
brain networks at 110 days and 135 days, when the brain is
largest.

Cortical connectivity

Fig. 5 shows the results of small-world analysis of the
cortical connectivity network. We can observe that the cor-
tical connectivity network also exhibits small-world charac-
teristics. Besides, the cluster coefficient and global efficiency
increase across brain development. These results are also
robust to the number of ROI’s in the experimental range.

IV. DISCUSSION

The results of cortical and subcortical connectivity net-
works both identified small-world characteristics of the fetal
brain network. This suggests that the characteristics of brain

network have been selected to solve the problem of opti-
mizing the brain information processing since its very early
development stage. Besides, the studies also demonstrated
a pattern of increased cluster coefficients as well as global
efficiency, meaning the overall efficiency of the brain in
processing information increases during its maturation. These
observations parallel the fact that myelination is in progress
and only partially formed at birth [11]. Furthermore, the
robustness of these results to the number of ROI’s indicates
the feasibility of applying small-world analysis to studying
developing fetal brains which is undergoing considerable size
and shape changes. Another observation from the small-
world analysis is that the cluster coefficients of the brain
network decrease linearly as the number of ROI’s increases,
however the cluster coefficients of the random network seem
to decrease quadratically, as shown in Fig. 4(a) and Fig. 5.
This could potentially be useful in predicting abnormalities
in fetal brain connectivity.

In conclusion, we have studied the changes in structural
connectivity networks in the monkey fetal brain using un-
biased random and regular parcellation schemes and graph
theory based analysis. The findings provide a picture of
the development of fetal brain networks, complementing the
existing studies in adult and baby brain networks. Future
work will explore the use of these measures in normal hu-
man development and their use in studying and quantifying
abnormal connectivity [12].
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(a) 85 days (b) 110 days (c) 135 days

Fig. 3. All fiber tracts connecting cortical ROI’s traced at all 3 time points. The fibers are overlaid on T2W structural images and colored by FA map.

Fig. 4. Subcortical connectivity: cluster coefficient and global efficiency (mean±standard deviation) as a function of the number of nodes at all 3 ages. (a,b)
compare these measurements of random partition based brain network and random network for testing the small-worldness of subcortical brain networks.
(c,d) compare the measurements obtained from both random and regular partition methods.

Fig. 5. Cortical connectivity: cluster coefficient and global efficiency (mean±standard deviation) as a function of the number of nodes based on random
partition scheme at all 3 ages. These measurements of random graphs are also plotted as dashed lines for testing the small-worldness of cortical brain
networks. For legend see Fig. 4.
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