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Abstract— Auscultation is an effective noninvasive medical
procedure for examining the cardiorespiratory system. How-
ever, the cardiac and respiratory acoustic sounds interfere
in time as well as in spectral contents, which hampers the
diagnostibility of the classical stethoscope. We propose a method
for smart auscultation by blindly recovering the original cardiac
and respiratory sounds from a single observation mixture. We
decompose the spectrogram of the mixture into independent,
non-redundant components, by employing non-negative matrix
factorization (NMF). To group the decomposed components into
original sources, a new unsupervised technique is proposed.
Time-frequency masking is used to recover the original sources.
This smart auscultation method is successfully applied to
actual data collected from different subjects in different clinical
settings. Our method demonstrates excellent results even in
noisy clinical environments.

I. INTRODUCTION

Acoustic analysis of the chest sound (which is a mix-
ture of cardiac and respiratory sounds) provides important
information in the diagnosis of cardiac and lung conditions.
However, the cardiac and respiratory sounds overlap in terms
of time-domain and spectral content, which compromises
auscultation even in the noise-free clinical environment.
Recovery of the original cardiac and respiratory sounds
from their mixture can enhance the quality of auscultation.
Separation of the cardiac and respiratory sound problem
has been investigated as a blind source separation problem
in [1]-[5], where two are more observation mixtures are
used for the recovery of two signals. However, most of the
modern stethoscopes used for chest sound auscultation, can
provide only a single observation mixture of the cardiac
and respiratory sounds. Conventional time-domain filtering
alone, cannot completely separate the two sources from
their single observation mixture, because of their overlap in
spectral content especially below 200Hz. In [6], fifteen dif-
ferent adaptive methods developed for separating the cardiac
sound from respiratory sound are reviewed and the filtering
techniques are categorized as linear adaptive filters and filters
employing time-frequency based methods. Adaptive filtering
does not completely suppress the cardiac sound segments
in respiratory sound because of the high non-stationarity
of the cardiac sound which makes time alignment of the
primary and reference signal difficult in real scenarios. Also
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the primary and reference input to an adaptive filter must
be of the same type for better noise cancellation. It means
in the adaptive filtering of the cardiac sound, an acoustic
cardiac signal should be used as reference. However, most
of the techniques reviewed in [6], use an ECG signal as
reference to the cardiac sound. All the studies in [6] were
based on the data acquired under ideal conditions, while
the potential usefulness of any method rests on its ability
to perform in real clinical settings. Recently, separation of
the respiratory sound from the cardiac sound using wavelet
transform based filtering has been proposed (see e.g. [7]).
In wavelet transform based filtering the selection of the
decomposition and threshold levels is quite challenging in
real scenarios. It is clear from the above that the separation of
the cardiac and respiratory sounds from a single observation
mixture is a challenging task that needs further investigation.

Matrix decomposition techniques such as non-negative
matrix factorization (NMF) [8], have been recently employed
in the single channel blind source separation of musical
data. The NMF is applied to the magnitude spectrogram
in order to produce a low dimensional approximation of
the original data, in the form of two non-negative matrices.
One matrix having the spectral basis vectors and the second
matrix containing time-variant gain information for each ba-
sis vector. Different versions of NMF been proposed during
the last decade, are reviewed in [9]. Most of the existing
techniques incorporate different constraints, reflecting the
features in musical data such as temporal structure, harmonic
structure etc.. However, the cardiac and respiratory sounds
lack the features of the musical data. Moreover, the existing
advanced versions of NMF are complex and computationally
expensive. On the other hand, the basic version of NMF [8] is
simple and computationally efficient. However, there are two
main challenges in basic NMF-based blind source separation;
1) there is no systematic mechanism to determine the suitable
number of basis vectors, and 2) how to classify and cluster
the basis vectors to form the original sources. Different
supervised and unsupervised clustering methods have been
proposed (see e.g. [10]) for musical data separation which
are not suitable in the blind source separation of the cardiac
and respiratory sounds.

In this paper we propose a new method to separate the
cardiac and respiratory sounds from a single observation
mixture, based on NMF and time-frequency masking. We
decompose the magnitude spectrogram of the observation
mixture into various components using the basic NMF. To
cluster the components into the original sources, we propose
an unsupervised clustering technique.
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The remainder of the paper is organized as follows.
Section II discusses the proposed method; Section III demon-
strates experimental results while conclusions and future
works are given in Section IV.

II. PROPOSED METHOD

In this Section, we describe a novel and computationally
efficient method for separating the cardiac and respiratory
sounds from a single observation mixture. Our method com-
prises of three different phases; 1) a decomposition phase,
which is the decomposition of mixture into independent
components based on NMF; 2) a clustering phase, where
similar components are grouped to form the original sources,
and 3) a reconstruction phase, where the original sources are
recovered from the spectrogram of the mixture using time-
frequency masking.

A. Mixing Model

Based on the fact that most of the modern stethoscopes
provide a single simultaneous observation of the chest sound,
we assume the following instantaneous mixing model for the
cardiac and respiratory sound signals:

x[m] =
∑
i

aisi[m] + η[m], (1)

where, x[m] represents the observation mixture and si[m],
ai represent the ith source and its amplitude, respectively.
i ∈ {c, r}, where c, r, represent the cardiac and respiratory
sound signal domains, respectively and η[m] represents white
Gaussian noise.

B. Non-negative Matrix Factorization

Non-negative matrix factorization is a useful tool that
is employed in a variety of signal processing applications.
NMF gives parts-based decomposition and imposes the only
constraint of non-negativity. Efficient algorithms for NMF
computations have been developed in [11]. In NMF, given
an F × T non-negative matrix V , we wish to approximate
V by the factors W and H as

V ≈WH, (2)

where, W is a F × K and H is a K × T non-negative
matrices, and K is chosen to be smaller than both T & F .
The objective of the NMF is finding a pair of W and H such
that the reconstruction error is minimized. The following two
cost functions are mostly used for minimizing reconstruction
error. The first cost function which is the squared Euclidean
distance between V and WH is defined as

DEUD = ||V −WH||2 =
∑
tf

(Vtf − (WH)tf )
2
, (3)

where, t and f represent time index and frequency bin re-
spectively. The second cost function which is the divergence
between V and WH is given as

DKL =
∑
tf

(Vtf log
V tf

(WH) tf
− Vtf + (WH)tf ). (4)

The lower bound of both the measures (3) and (4) is zero and
it is optimized if V = WH . The recursive updates which
converge to local minima are given as

W ←W • V HT

WHHT , H ← H • WTV
WTWH

, (5)

W ←W •
V
WHHT

1.HT , H ← H • W
T V
WH

WT .1
, (6)

where, D•E denotes element-wise multiplication, DE denotes
element-wise division and 1 is a matrix with all elements
unity. The update rules (5) and (6) corresponds to cost
functions defined in (3) and (4) respectively. (2) can be re-
written as

V ≈
K∑
k=1

wkhk, (7)

where, wk represents the kth column of W , hk represents
the kth row of H i. e., W = {w1, w2, . . . wK}, H =
{h1, h2, . . . hK}T and T denotes transpose.

C. Decomposition Phase

NMF was originally developed for image processing as a
two-dimensional (2D) image can be regarded as a matrix.
The time-domain signals which consist of positive as well
as negative values are not suitable for NMF. However,
NMF can be applied to the magnitude spectrogram of the
corresponding signals. The spectrogram of a signal, can be
calculated by dividing the time-domain signal into small
frames using a suitable window function, and performing the
discrete-time Fourier transform on each frame. The discrete-
time short time Fourier transform (STFT) of a time-domain
signal s[m] is given as

S(n, ω) =

∞∑
m=−∞

s[m]ψ[n−m]e−jωm, (8)

where, ψ[n − m] is a suitable time window and (n, ω)
represents a time-frequency index. Using (8), we can write
(1) as

X(n, ω) =
∑
i

aiSi(n, ω) + η(n, ω). (9)

X(n, ω) represents the spectrogram of the mixture of cardiac
and respiratory sounds. The cardiac sound Sc is generally
produced by the mechanical activities of the heart. Adults,
normally produce two heart sounds, during a single heartbeat,
s1 and s2. Two more heart sounds s3 and s4 also appear
sometime during the heartbeat. Similarly, the respiratory
sound Sr is also a combination of sounds produced by
different parts of the lung during respiration. Therefore, we
can rewrite (9) as

X(n, ω) = AB(n, ω) + η(n, ω), (10)

where, A =
∑
k

ak, and B(n, ω) =
∑
i

Si(n, ω) =
∑
i

∑
k

bk,

where bk represents the kth component of source Si.
As we know that the cardiac and respiratory sounds are

composed of different component sounds, therefore, in order
to separate these sources, we decompose their mixture into
independent and non-redundant components based on NMF.



We apply the basic NMF to the magnitude of the spectro-
gram (10). The NMF decomposes X = ||X(n, ω)|| (which
is a F×T matrix, shown in Fig. 1) into W which is a F×K,
and H which is a K × T non-negative matrices. Here the
idea is to define K < T so that W can be compressed
and reduced to its integral components such as W is a
matrix having only a set of spectral basis vectors, and H
is a matrix containing the weight of each basis vector at
each time point. Fig. 1 shows the magnitude spectrogram
of a real mixture (of cardiac and respiratory sounds). The
relevance of W and H to X is also shown. With a simple

Fig. 1. The magnitude spectrogram X along with its decomposed factors
W and H .

example, we demonstrate, how we decompose a mixture
into different components. The mixture we use here is an
actual observation mixture of the cardiac and respiratory
sounds obtained in a clinical setting. The mixture X is
decomposed into different components based on NMF, with
K = 8. The time-domain representation of the decomposed
components along with the original mixture are shown in
Fig. 2. The following section discusses how to group the
different components into original sources.

D. Clustering Phase

Grouping the decomposed components into original
sources is the most challenging task in the approach of
blind source recovery using basic NMF. Various clustering
techniques have been proposed for musical data separation.
The existing clustering techniques are not suitable to separate
the cardiac and respiratory sounds because of their complex
and non-stationary nature. Therefore, we propose a new
unsupervised clustering technique for grouping the various
independent components into the original sources. We exploit
the fact that the spectral interference of the cardiac and
respiratory sounds is minimal below 100 Hz, which we
call the partial-overlapping region. This partial-overlapping
region, which is evident from the spectrogram of the real
mixture of the cardiac and respiratory sounds shown in
Fig. 1, mostly consists of the cardiac sound. We use this
partial-overlapping region as a reference in our unsupervised
clustering technique.
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Fig. 2. Time-domain representation of the decomposed components of
mixture (1) using NMF.

First we decompose the partial-overlapping region of the
magnitude spectrogram X based on NMF, which generates
the factors H̃ and W̃ . Here H̃ is an F ×K̃ matrix, and W̃ is
a K̃×T matrix. Then we try to find the similarities between
the mixed and partial-overlapping regions. We propose two
different clustering methods.

1) Clustering method 1: Here, we first define a general
correlation formula as

cor := Cor(fk, gk) :=

∑
fkgk√∑

fk2
√∑

gk2
(11)

where, fk and gk are the vectors having equal lengths, cor ∈
[0, 1] and cor = 1 shows maximum correlation where as,
cor = 0 dictates that fk and gk are uncorrelated. Now, on
the basis of (11), we calculate two kinds of correlations,
which we call spectral correlation and temporal correlation.
The spectral correlation is defined as

cf = Cor(wk, w̃k), (12)

where, cf is the correlation between the basis vectors of
the mixed and partial-overlapping regions and cf ∈ [0, 1].
Similarly, we also define the temporal correlation as

ct = Cor(hk, h̃k). (13)

Here, ct is the correlation between the weight vectors of the
mixed and partial-overlapping regions and ct ∈ [0, 1].

Having defined the similarity criterion, we propose the
following algorithm to cluster the similar components into
original sources. Our clustering algorithm is divided into
three steps:

Step 1) In this step, we initialize the different parameters
of the algorithm as follows

c← cf × ct
α← max(c)− max(c)

γ

β ← min(c) + min(c)
γ

(14)

where, the α and β set thresholds for the different groups,



and {α, β}∈ [0, 1]. The parameter γ ≥ 1 and can be found
heuristically.

Step 2) In this step we group the different components
into the following three groups:

Gc = {W1, H1}, Gr = {W2, H2}, Gm = {W3, H3}, (15)

where Gc, Gr and Gm represent the components belonging
to cardiac, respiratory and mixed sound respectively, and {H1,W1} ⊆ {H,W} s.t. c ≥ α

{H2,W2} ⊆ {H,W} s.t. c ≤ β
{H3,W3} ⊆ {H,W} s.t. β < c < α,

(16)

Wl and Hl represent the columns and rows of W and H
respectively, and l ∈ {1, 2, 3}. It should be noted that α > β.

Step 3) This is the learning step of the algorithm. Provided
that Gm is not empty, we update the different parameters of
the algorithm as follows

c← c′

α← max(c)− max(c)
γ

β ← min(c) + min(c)
γ

W ←W3

H ← H3.

(17)

Here, c′ is the correlation between the basis vectors of Gc
and Gm, defined as

c′ = Cor(wgc, wgm), (18)

where, wgc ∈ {W1} , wgm ∈ {W3} and c′ ∈ [0, 1]. Step 2
and Step 3 are repeated consecutively, until the grouping is
completed.

2) Clustering Method 2: In this method, we try to find
the correlation between the decomposed components of
the mixture and partial-overlapping region. The correlation
function is defined as

CR =

∑
n,ω

Yi(n,ω)Z(n,ω)√∑
n,ω

Y 2
i
(n,ω)

√∑
n,ω

Z2(n,ω)
, (19)

where Yi(n, ω) = ||wihi||, Z(n, ω) = ||W̃ H̃|| and CR ∈
[0, 1]. The clustering algorithm for this method is the same
as discussed in Section II-D.1.

Annotating the different component, we can approximate
the magnitude of the original sources as

Xi ≈
∑
p,q

wphq, (20)

where wp and hq represent the pth basis and qth weight cor-
responding to the ith source. We discuss the reconstruction
of these sounds in the following section.

E. Reconstruction Phase

Once the magnitude spectrogram is approximated into
original sources, the corresponding phases can also be ap-
proximated using the original spectrogram. An alternative
approach is to generate a time-frequency mask for each
source and apply the corresponding mask to the original

spectrogram, to recover the original sources. We construct
a time-frequency mask as

Mi =

{
1 ∀Xi > Xj , j ∈ {r, c}, j 6= i
0, otherwise.

(21)

The idea of time-frequency masking is based on the assump-
tion that cardiac and respiratory sound signals are sparse
[3], which means that over a small time-frequency region
only one source dominates. The time-frequency mask (21)
is applied to the spectrogram of the mixture (9) to recover
the original sources as

Si(n, ω) =Mi •X(n, ω). (22)

The inverse short-time Fourier transform (ISTFT) is used to
convert the original sources back into the time-domain.The
latter approach provides better results as compared to the
former.

F. Summary
The three phases of the proposed method are summarized

as:
• Decomposition Phase

1) Generate the spectrogram of mixture using STFT
2) Decompose the magnitude spectrogram of the

mixture into H and W using NMF
• Clustering Phase

1) Decompose the partial-overlapping region of the
spectrogram into H̃ and W̃ using NMF

2) Find the spectral and temporal similarities
3) Initialize the algorithm parameters
4) Perform grouping
5) Update the algorithm parameters and go to step

(4) until grouping is completed
• Reconstruction Phase

1) Generate a time-frequency mask corresponding to
each source

2) Recover the original sources by applying the time-
frequency mask to the spectrogram of the mixture

3) Take the ISTFT to convert the recovered sources
back into time-domain

III. RESULTS AND DISCUSSIONS

A. Experimental Setup
We performed experiments on different sets of clinical

data. The clinical data is taken from an online data base
[12]. To measure the performance of the method, we define
as performance metric the signal-to-interference ratio (SIR):

SIRi =

∑
n,ω

||Mi(n,ω)Si(n,ω)||
2∑

n,ω

||Mi(n,ω)Ii(n,ω)||2
, (23)

where, Ii(n, ω) is the interference with the ith source. In our
experiments, for STFT representation, Hanning window of
length 1024 samples was used. The parameter K was varied
from 2 to 20, where as K̃ was varied from 1 to 10. γ = 4
was used for various experiments. The maximum number of
iterations used for NMF was 130.



TABLE I
PERFORMANCE OF THE PROPOSED METHOD

Sample mixture Recovered sources SIR (dB)

140 1306519735121 A sc 24.76
sr 18.21

150 1306776340746 B sc 22.13
sr 14.14

101 1305030823364 B sc 21.91
sr 17.64

104 1305032492469 A sc 15.72
sr 17.13

B. Clinical Data

The data samples taken from [12] were obtained from
four different subjects, in noisy clinical settings, using an
electronics stethoscope, with a data sampling frequency of
4KHz. A data sample is a real mixture of cardiac and
respiratory sounds. Fig. 3 shows the time-domain plots of
our experiment, where plot (a) shows the mixture, plots
(b) and (c) show the recovered respiratory sr and cardiac
sc sounds respectively. Plots (d) and (f) compare the re-
covered and original respiratory sounds in linear and log
scales respectively, where as, plots (e) and (g) compare the
recovered and original cardiac sounds in linear and log scales
respectively. Note that the comparison plots are zoomed over
a small segment of original and recovered signals for better
illustration. The performance metrics of the experiments are
given in Table I.
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Fig. 3. Recovery of the cardiac and respiratory sounds from a clinical
mixture.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A novel and computationally efficient method is proposed
to separate the cardiac and respiratory sounds from a single

observation mixture. The basic NMF is used to decompose
the magnitude spectrogram of the mixture into various com-
ponents. The partial-overlapping region of the spectrogram is
used as a reference in the developed unsupervised clustering
technique. The method is applied to the actual data recorded
in echoic and noisy clinical settings. Excellent recovery
of the cardiac and respiratory sounds is achieved with a
single observed mixture, thus outperforming, to our best
knowledge, other techniques in the literature.

B. Future Works

The main goal of this research is to enhance the quality
of auscultation. In this paper, we separated the cardiac and
respiratory sounds in normal conditions. While in case of car-
diac and respiratory conditions, various pathological sounds
are also produced. The next step is to perform analysis of
the separated cardiac and respiratory sounds. This includes
identification and classification of normal and pathological
signals.
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