
 

  
Abstract — In this work, we have developed an adjunct 

Computer Aided Diagnostic (CAD) technique that uses 3D 
acquired ultrasound images of the ovary and data mining 
algorithms to accurately characterize and classify benign and 
malignant ovarian tumors. In this technique, we extracted 
image-texture based and Higher Order Spectra (HOS) based 
features from the images. The significant features were then 
selected and used to train and test the Decision Tree (DT) 
classifier. The proposed technique was validated using 1000 
benign and 1000 malignant images, obtained from 10 patients 
with benign and 10 with malignant disease, respectively. On 
evaluating the classifier with 10-fold stratified cross validation, 
we observed that the DT classifier presented a high accuracy of 
95.1%, sensitivity of 92.5% and specificity of 97.7%.  Thus, the 
four significant features could adequately quantify the subtle 
changes and nonlinearities in the pixel intensities. The 
preliminary results presented in this paper indicate that the 
proposed technique can be reliably used as an adjunct tool for 
ovarian tumor classification since the system is accurate, 
completely automated, cost-effective, and can be easily written 
as a software application for use in any computer.  

Index Terms—ovarian tumor; texture features; higher order 
spectra; characterization; classification; computer aided 
diagnosis 

I. INTRODUCTION 
ltrasonography and the determination of the levels of a 
tumor marker called Cancer-Antigen 125 (CA125) are 

the most commonly used techniques for detecting ovarian 
cancer. In the case of ultrasonography, the accuracy and 
reproducibility of the visual interpretations are most often 
dependent on the skill of the observer. The CA125 marker 
has been found to be elevated only in 50% of stage 1 
cancers.1 Furthermore, CA125 can also be raised in other 
malignancies such as uterine and pancreatic, and sometimes 
in certain benign conditions.2 In this work, we have 

 
Manuscript received January 30, 2012.  
U. Rajendra Acharya is with the Department of Electronics and 

Computer Engineering, Ngee Ann Polytechnic, Singapore  
Vinitha Sree is with Global Biomedical Technologies Inc., CA, USA 

(email: vinitha.sree@gmail.com)  
Luca Saba is with the Department of Radiology, Azienda Ospedaliero 

Universitaria di Cagliari, Cagliari, Italy 
F. Molinari is with the Dept. Electronics and Telecommunications, 

Politecnico di Torino, Torino, Italy. 
Stefano Guerriero is with Department of Obstetrics and Gynecology, 

University of Cagliari, Ospedale San Giovanni di Dio, Via Ospedale 46, 
09124 Cagliari, Italy 

Jasjit S. Suri, Fellow AIMBE, is a CTO with Global Biomedical 
Technologies, CA, USA and is also affiliated with Biomedical Engineering 
Department, Idaho State University, ID, USA (jsuri@comcast.net). 

 

proposed an adjunct diagnostic technique that uses image 
mining techniques to classify ovarian tumors in ultrasound 
images, and therefore, to give a valuable second opinion to 
doctors in order to decide further diagnostic protocol for the 
patient. Such Computer Aided Diagnostic (CAD) techniques 
can prove to be excellent adjunct techniques, especially for 
mass screening, because of their speed, non-invasiveness, 
easy usability, cost-effectiveness, and reliability.  
 There are very few studies in the application of CAD for 
ovarian cancer detection. Most of these studies use features 
based on (a) blood test results,3 (b) Mass Spectrometry (MS) 
data,4-8  and (c) ultrasound images.9-13  Such MS based 
classification studies are affected by the curse of 
dimensionality14 as they have to process a high dimensional 
feature set obtained from a small sample size. Moreover, the 
MS equipment is expensive and not available in most 
countries. Therefore, in our work, we have proposed the use 
of images acquired using the commonly available and low-
cost ultrasound modality. 3D ultrasonography approach 
allows for objective and quantitative documentation of the 
morphological characteristics of benign and malignant 
tumors.15 Studies have shown that the selective use of 3D 
ultrasonography and power Doppler ultrasound can improve 
the diagnostic accuracy of ovarian tumors.16 Therefore, we 
have used 3D transvaginal ultrasonography for image 
acquisition in this work. 

II. MATERIALS AND METHODS 

A. Methodology 
 Fig. 1 depicts the block diagram of the proposed real-time 
image mining CAD technique (a class of GyneScanTM 
systems). It consists of an on-line classification system 
which predicts the class label (benign or malignant) of a test 
image based on the transformation of the on-line grayscale 
feature vector by the training parameters determined by an 
off-line learning system. The off-line classification system 
produces the training parameters using the combination of 
grayscale off-line training features and the respective off-
line ground truth training class labels (0/1 for 
benign/malignant).  The grayscale features for on-line or off-
line training are based on image texture and Higher Order 
Spectra (HOS). Significant features among the extracted 
ones are selected using the t-test. We evaluated the Decision 
Tree (DT) classifier. The above CAD system was developed 
using an image database, in the training set images were 
used to develop the DT classifier. The built classifier was 
evaluated using the test set. For evaluation, we used a k-fold 
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cross validation protocol.  The predicted class labels of the 
test images and the corresponding ground truth labels (0/1) 
are compared to determine the performance measures of the 
system such as sensitivity, specificity, accuracy, and Positive 
Predictive Value (PPV). 

 
Fig. 1.  Block diagram of the proposed system; The blocks outside the 

dotted shaded rectangular box represent the flow of off-line training system, 
and the blocks within the dotted box represent the on-line real-time system 

B. Data 
Twenty women (age: 29-74 years; mean ± SD = 

49.5±13.48) were consecutively selected during pre-surgical 
evaluation. The study was approved by the Institutional 
Review Board. Informed consent was obtained. Patients with 
no anatomopathological evaluation were excluded from the 
study. Biopsies indicated that 10 had malignancy in their 
ovaries and 10 had benign conditions. All patients were 
evaluated by 3D-transvaginal ultrasonography using a 
Voluson-I (GE Medical Systems) according to a predefined 
scanning protocol using 6.5 MHz probe frequency   A 3D 
volume of the whole ovary was obtained. Volume 
acquisition time ranged from two to six seconds depending 
on the size of the volume box. In cases where a given 
adnexal mass contained more than one solid area, and hence, 
had more than one volume stored, only the volume best 
visualizing the mass was chosen for further analysis. Fig. 2 
shows typical ultrasound images of benign and malignant 
classes. We chose the middle 100 images from each volume 
from each subject. Thus, the evaluated database consisted of 
1000 benign images and 1000 malignant images.  

C. Feature Extraction 
 Usually the histopathologic cytoarchitecture of malignant 
tumors is different from benign neoplasm with several areas 
having intra-tumoral necrosis.17,18 These changes manifest as 
non-linear changes in the texture of the acquired ultrasound 
images which are quantified by texture-based and HOS 
based features.  
 

  
(B1) 

Histology: Endometrioma; Echo:  
characteristic diffuse, low-level 

echoes of the endometrioma 
giving a solid appearance. 

(M1) 
Histology: Borderline malignant 
tumor; Echo: multiloculate echo-
pattern with multiple thick septa. 

Fig. 2.  Ultrasound images of the ovary:  (B1) Benign condition (M1) 
Malignant tumor 

 

Texture Features: 
Fractal Dimension: Fractal Dimension (FD) indicates the 

irregularity in the pixel intensities of the image. Consider a 
surface S in Euclidean n-space. This surface is self-similar if 
it is the union of Nr non-overlapping copies of itself scaled 
up or down by a factor of r. In this work, we used the 
modified differential box counting with sequential algorithm 
to calculate FD.19 The input of the algorithm is the gray-
scale image where the grid size is in the power of 2 for 
efficient computation. Maximum and minimum intensities 
for each (2 x 2) box are obtained to sum their difference, 
which gives the M and r by s/M where M=min(R,C), s is the 
scale factor, R and C are the number of rows and columns, 
respectively. When the grid size gets doubled, R and C 
reduce to half of their original value and above procedure is 
repeated iteratively until max(R,C) is greater than 2. Linear 
regression model is used to fit the line from plot log(Nr) vs. 
log(1/r) and the slope gives the FD.  

Gray level Co-occurrence Matrix (GLCM): The elements 
of the GLCM  are made up of the relative number of 
times the gray level pair (a, b) occurs when pixels are 
separated by the distance (a,b) = (1, 0).20 The probability of 
a pixel with a grey level value i having a pixel with a gray 
level value j at a  distance away in an image is 

              (1) 
Based on Eqn. (1), we obtain the correlation feature, 

which is a measure of image linearity:   
 
 
                       (2) 
where 
                      (3) 
  
                      (4) 
 

HOS Features: 
 Higher order statistics denote higher order moments 
(order greater than two) and non-linear combinations of 
higher order moments, called the higher order cumulants. 
They help to extract information on the phase and 
nonlinearities present in the signal.21 Prior to the extraction 
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of HOS based features, the pre-processed images are first 
subjected to Radon transform to convert a 2D image into a 
1D signal at various angles.22 This 1D signal is then used to 
determined the bispectrum, B(f1,f2) which is a complex 
valued product of three Fourier coefficients given by 

     (5) 
where A(f) is the Fourier transform of a segment of a 

single realization of the random signal a(nT), n is an integer 
index, T is the sampling interval and E[.] stands for the 
expectation operation. A*(f1+f2) is the conjugate at frequency 
(f1+f2). The function exhibits symmetry, and is computed in 
a non-redundant/ principal domain region Ω .21 The 
bispectrum phase entropy23 is defined as: 

Bispectrum Phase Entropy:  
          (6) 

where 

     (7) 
    (8) 

where L is the number of points within the region Ω,  is 
the phase angle of the bispectrum, and l(.) is an indicator 
function which gives a value of 1 when the phase angle is 

within the range depicted by  in Eqn. (8). We also derived 
three bispectrum entropies that are defined below24 in order 
to quantify the non-linear changes in the ultrasound images.  

Normalized Bispectral Entropy (e1Res):  
            (9) 

where 

            

 (10) 
where index= 1 for e1Res, 2 for Normalized Bispectral 

Squared Entropy (e2Res), and 3 for Normalized Bispectral 
Cubed Entropy (e3Res).  We extracted normalized 
bispectrum entropy, normalized bispectral squared entropy, 
and normalized bispectral cubed entropy for every one 
degree of Radon Transform between 0 to 180 degrees. Thus, 
the total number of extracted features would be 724 (181 x 
4).  

D. Decision Tree (DT) classifier 
 In the case of Decision Trees (DT), the input features are 
used to construct a tree, and then a set of rules for the 
different classes are derived from the tree.25 These rules are 
used for determining the class of an incoming new image.  

III. RESULTS 

A. Selected Features 
After the feature extraction process, there were a total of 

726 features (1 FD, 1 texture based, and 724 HOS based). 
Using all these feature would given rise to curse of 
dimensionality problem22 and over-fitting of classifiers. 
Therefore, we used Student’s t-test26 to select significant 
features. Table I presents the Mean ± Standard Deviation 
(SD) values of the selected features for both the benign and 
malignant classes. The low p-value indicates that listed four 
features, namely, FD, Correlation, Bispectral phase entropy 
at Radon Transform angles of 170º and 171º are significant. 

TABLE I 
SIGNIFICANT FEATURES THAT HAD A P-VALUE < 0.0001 AND THEIR RANGES 
(MEAN ± STANDARD DEVIATION) FOR BENIGN AND MALIGNANT CLASSES. 

Feature Benign Malignant p-value 
FD 2.25±4.12E-02 2.26±2.05E-02 < 0.0001 

Correlation 0.98±9.01E-03 0.97±8.50E-03 < 0.0001 
ePRes (170º) 2.96±0.47 2.91±0.52 < 0.0001 
ePRes (171º) 2.99±0.47 2.92±0.52 < 0.0001 

B. Classification Results 
Ten-fold stratified cross validation was used to evaluate 

these classifiers. In this method, the dataset was split into ten 
parts, each part containing the same proportion of images 
from both classes.  In the first fold, nine parts were used for 
training and the tenth part was used for testing and for 
calculation of the performance measures. This protocol was 
repeated nine more times with a different part as the test set. 
The averages of the performance measures (sensitivity, 
specificity, Positive Predictive Value (PPV), and accuracy) 
obtained during the testing phase of each fold are reported as 
the final performance measures for that classifier. The 
averages of the performance measures obtained in the 10 
folds are reported in Table II.   It is evident that the simple 
decision tree classifier presented the high accuracy of 95.1%, 
sensitivity of 92.5% and specificity of 97.7%.  The 
advantage of the DT classifier is that this classifier uses rules 
to classify a new image. These rules are comprehensible to 
the end-user, and hence, allow the physicians to more 
confidently accept the result from the classifier. This is not 
the case with classifiers such as the neural networks which, 
in most cases, are not transparent in the way in which they 
determine the class label.  

TABLE II 
CLASSIFICATION RESULTS OBTAINED USING THE DT CLASSIFIER  

 A: ACCURACY; SN: SENSITIVITY; SP: SPECIFICITY 

SVM 
A 

(%) 

PPV 

(%) 

Sn 

(%) 

Sp 

(%) 

Linear  95.1 97.8 92.5 97.7 

IV. DISCUSSION 
Renz et al.3 used age and results of 30 blood tests as 

features which resulted in an accuracy of 92.9%. Among the 
mass spectra based studies,4-8 the reported accuracies ranged 
from 84% to 100%. Even though the accuracies are high, the 
use of these techniques is limited by the availability and cost 
of the necessary equipment for data analysis.  Tailor et al.9 

and Biagiotti et al.11 both used several demographic and 

) )
) 
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quantities from ultrasonography images to obtain 
classification sensitivity of 100% and 96%, respectively.  
Bruning et al.10 developed a knowledge-based system called 
ADNEXPERT that used histopathologic and sonographic 
data for diagnosis of adnexal tumors and achieved an 
accuracy of 71%. All these three studies9-11 used features 
based on evaluations made by the operator, and hence, these 
features may be subjective. Zimmer et al. 12 used grey-level 
intensity variations from a segmented region of interest, and 
classified the tumour into three main categories (cyst, solid 
and semi-solid), and obtained a low accuracy of 70% for 
tumours containing solid portions. Lucidarme et al.13 used 
the Ovarian HistoScanning technique and reported 91.73% 
accuracy.  

In this work, we have proposed a CAD technique which 
uses a novel combination of four features in the DT classifier 
to output a high accuracy of 95.1%. The proposed system 
uses the whole ultrasound image, automatically extracts 
features and uses them in the DT classifier to predict the 
class of the patient. Only four easily determinable features 
have been used which reduces the computational load and 
time. On the limitations side, for medical legal concerns, the 
radiologists have to store all CAD findings and images 
which increase digital storage requirements. We also believe 
that there is more room for improvement in accuracy. 
Therefore, in future, we intend to analyze other texture 
features to determine more discriminating features. 
Moreover, the clinical applicability of our proposed 
technique has to be established with more studies containing 
larger image databases from multi-ethnic groups. We also 
intend to extend the study to 3D, wherein we would include 
the spatial information of the 3D slices taken from each 
patient for analysis. 

V. CONCLUSION 
In this work, we determined a novel combination of four 

texture and HOS based features that adequately quantify the 
non-linear changes in both benign and malignant ovarian 
ultrasound images. These features were used in a Decision 
Tree classifier which registered a high accuracy of 95.1%, 
sensitivity of 92.5% and specificity of 97.7%.  The 
developed classifier is robust as it was evaluated with 1000 
benign and 1000 malignant samples using 10-fold stratified 
cross validation. Even though the presented preliminary 
results are based on images from only 20 cases, the highly 
discriminating features, cross-validation technique used, and 
the resulting good accuracy make this technique a promising 
one. The CAD tool would be a more objective alternative to 
manual analysis of ultrasound images which might result in 
inter-observer variations.  
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