
 

 

Abstract—Peak and spike artifacts in time series represent a 
serious problem for signal analysis especially in biomedical field. 
From the last decades, different techniques have been used for 
their removal mainly based on adaptive filters. This work 
presents a new approach for removing peak and spike artifacts 
based on the analytic signal envelope, filtered with a low-pass 
filter. The proposed algorithm was tested on 
electroencephalogram signals containing peak and spike 
artifacts. Results showed that this method permitted to remove 
the peak and spike artifacts preserving both high correlation (  
>0.9) and spectral coherence (  >0.85) with the original signal.  
 

I. INTRODUCTION 
N general, there are several disturbances that could 
contaminate the electroencephalogram (EEG) signal such as 

changes associated to cerebral activity that should be removed 
from the recordings before further analysis. A band-pass filter 
is adequate only when the true signal has all frequency content 
between the cutoff frequencies. This is usually not the case for 
general biomedical signal processing. In fact, a band-pass 
filter, in the characteristic EEG frequency band, is commonly 
used for eliminating EMG and power line noise but it is not 
enough for others, such as certain peak and spike noise. Also 
the heart electrical activity present throughout the body is 
often displayed as artifact component in EEG signals, since 
the electrodes used to measure EEG signals are sensitive to it 
[1].  

The recorded EEG for the evaluation of epileptic seizures 
can present artifact and short-time high-amplitude events that 
mask the quasi-periodic structure of the seizures [2]. Different 
filter designs mainly based on adaptive algorithms with linear 
and nonlinear structures have been developed for artifact 
removal [3, 4]. Common problems faced during the clinical 
recording of the EEG signal are the eye blinks and movements 
of the eye balls that produce electrical activity on the scalp  
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that interferes with the EEG. To correct or remove ocular 
artifacts from EEG, many regression-based techniques have 
been proposed [5-9]. They require calibration trials in order to 
determine the transfer coefficients between the EOG channels 
and each of the EEG channels for estimating the EOG 
component and subtracting it from the signal. Also 
independent component analysis (ICA) has been proposed 
[10] to separate the EOG signals from the EEG signals. This 
method, used to remove multiple types of artifacts 
simultaneously [11], requires off-line analysis and processing 
of data collected from a sufficiently large number of channels, 
and its success largely depends on correct identification of the 
noise components. Croft et al. [12] reviewed a number of 
methods of dealing with ocular artifact in the EEG, focusing 
on the relative merits of a variety of EOG correction 
procedures. He et al. [13] described a noise cancellation 
method based on adaptive filtering to remove ocular artifacts 
from EEG without calibration trials. This can be implemented 
on-line using EOG signal as reference. 

Interferences can mask relevant features in the EEG and 
consequently must be removed [14]. To improve the approach 
to this problem, our work describes a new method for 
removing peak and spike artifacts from EEG signals. This 
method, that permits to make the components of signal 
amplitude and frequency independent, is based on analytic 
signal. This procedure has been tested on an EEG data set and 
compared with the performance of an adaptive filter. The 
methods previously described normally require multichannel 
recordings or a reference signal for the extraction and 
elimination of the noise. This issue presents a filter 
methodology that can be applied on a single channel record 
and without using any reference signal. 

II. MATERIALS AND METHODOLOGY 

A. The Hilbert Transform and the Analytic Signal 
Let x(t) be a real-valued finite energy signal defined over 

the temporal interval  -  < t < , its Hilbert transform is 
defined as [15] 
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In the frequency domain, the result is obtained by 
multiplying the spectrum of the x(t) by j (+90˚) for negative 
frequencies and −j (−90˚) for positive frequencies. The time 
domain result can be obtained performing an inverse Fourier 
transform. Therefore, the Hilbert transform of the original 
function x(t) represents its harmonic conjugate [16].  

Considering the concept of analytic signal of a real signal 
x(t), it can be written as 

 (2) 
In this way, the signal x(t) can be expressed as the product of 
two signals: 

 (3) 
 

and the instantaneous phase as 
 

 (4) 
 
being z (t) a zero mean signal. The signal 

 can be considered as a signal 
modulated both in frequency and amplitude. Consequently, the 
interest is to estimate the contribution that each component 
provides to the total x(t) signal bandwidth. 

B. Frequency Component Contribution 
In general, an angular modulation xf(t) with modulator 

, which represents a pass band signal centered at f0 Hz, 
can be expressed as 

 
 (5) 

 
Taking the term and its series expansion 

 then xf (t) can be written as  

  
and its Fourier transform is the sum of the Fourier transforms 
of the infinite terms. Each of them has a frequency bandwidth 
centered in  and with the size of the bandwidth of signal z(t) 
multiplied by the order of the term. 

This shows that the spectrum of the frequency component 
 is spread, representing a band pass signal 

and contributing to x(t) essentially at high frequencies. 

C. Amplitude Component Contribution 
The amplitude component  is always positive and 

therefore represents a low pass signal. Its amplitude spectrum 
M(f) is not zero at zero frequency. 

It is interesting to find a bound for the bandwidth B of the 
signal m(t) using the low pass spectrum M(f). The bandwidth 

B, defined at the cutoff frequency where  is satisfied, 

depends on the absolute value of the derivative maximum 

 and the M(0). Fig. 1 will help to introduce the 

development of the next formulas, showing schematically the 
spectrum of a low pass signal. 

Taking the absolute value of the derivative in the expression  
, the next expressions are deduced 

 
 
 
 
 
 
 
 
 

Figure 1. Spectrum of low pass signal 
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then 
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The maximum slope occurs at the first zero of the sinc 

function (t=1/(2B)). Therefore, if for any t the first member of 
the equation (7) is greater than or equal to the second member, 
then for a particular time t it will also be fulfilled. If this time 
is  t = 1/(2B) for which the second member of the equation (7) 
takes the highest value, then equation (7) can be written as 
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The expression (8) shows that the absolute value of the 

maximum slope of m (t) is always greater than or equal to the 
constant obtained as function of B and M(0). Consequently, 
the equation can be written as 

 

 
(9) 

providing a bound for the bandwidth (in Hz) of the component 
amplitude. 
 

D. Description of the Filter Algorithm 
The proposed algorithm implements a filter based on 

analytic signal envelope (ASEF) that reduces the amplitude of 
peaks or spikes in the EEG signals. It is based on filtering the 
envelope m(t) of a signal x(t) with a low pass filter with a very 
small pass band B.  

The main steps of the filter algorithm for a signal x(t) are: 
 Calculation of the analytic signal y(t) of x(t) 
 Calculation of the envelope m(t) and the 

instantaneous phase (t) 
 Filtering of m(t) with a FIR filter of high order 

obtaining mfilt(t) 

M(f) 

M(0)/ 2 

B  f 
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 Multiplication of the filtered envelope mfilt(t) and the 
 in order to obtain the final filtered signal 

xfilt(t)  (10) 
=  (10) 

E. Bandwidth of Low Pass Filter for EEG Signals 
Considering a subset of 10 EEG signals corrupted by peak 

noise obtained from www.physionet.org [17]. After the 
calculation of M(0), for different values of slope, the 
bandwidth for the envelope was estimated. The derivative 
maximum bound of this EEG signal , the bound of 

the bandwidth B obtained from (9) are calculated for segments 
of the signals with and without peaks.  

 

F. Evaluation of ASEF Filter 
In order to test the proposed method, ASEF filter and 

normalized least mean squares  (NLMS) adaptive filter [18] 
were applied to an EEG signal data set [17] and their 
performances compared. The NLMS adaptive filter 
characteristics were 300th order with step size of 0.1, no 
leakage and using a segment of EEG without peaks as 
reference signal. The correlation coefficient  between the 
original signal x(t) and xfilt(t) and also the mean value of the 
coherence function   [19] were calculated. 

 

III. RESULTS 
Table I shows the results of calculations of the bound of the 

bandwidth B. As it can be noted, the mean value of B for 
signals with peaks is B= 0.10284 Hz. The mean value of B for 
signals without peaks is B= 0.05547 Hz and it could represent 
the filter bandwidth to eliminate theoretically all the peaks. 
Normalizing the bandwidth B by the B of signals with peaks, 
the B of the signal without peaks is 54% of the total 
bandwidth. Then, a bandwidth of B≤0.0625 Hz, that 
represents a maximum of the 60% of the total bandwidth, can 
be an acceptable value. This bound permits to preserve low 
amplitude peaks with physiological meaning. 

The ASEF filter reduces the amplitude of the peak and 
spike noise (EEG movement artifacts), without changing the 
frequency components ( of the original signal. 

Fig. 2 shows the envelope m(t) of an EEG signal [17] and 
its low pass filtered envelope mfilt(t). As it can be seen in Figs. 
3a and 3b, the filtered signal xfilt(t) shows a reduction of the  

 

 
peaks amplitude compared with the original signal x(t), but 
without affecting the position of the zero crossings (Fig. 3b). 
The correlation coefficient and mean value of the coherence 
function were = 0.955 and  = 0.896, respectively. 

 
(a) 

 
(b) 

Figure 3. A signal x(t) with peaks (in blue) and the filtered signal xfilt(t) (in red). 
 

 
Figure 2. Envelope m(t) (in pink) and mfilt(t) (in yellow). 
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TABLE I  CALCULATION OF BANDWIDTH VALUE 

Signal with peaks Signal without peaks 

M(0)  B M(0)  B 

0.91921 0.05313 0.12021 0.61271 0.00914 0.06107 

1.04768 0.05284 0.11229 0.67573 0.00788 0.05400 

1.06069 0.05188 0.11058 0.57646 0.00617 0.05174 

1.06450 0.04912 0.10741 0.86802 0.00935 0.05189 

0.90594 0.06563 0.13458 0.56150 0.00714 0.05640 

1.29673 0.04986 0.09805 0.68448 0.00837 0.05530 

1.05291 0.05073 0.10975 0.51947 0.00634 0.05524 

0.92341 0.05088 0.11736 0.60698 0.00750 0.05559 

1.13671 0.05245 0.10741 0.56466 0.00713 0.05620 

1.10913 0.05722 0.11357 0.62281 0.00816 0.05725 

Values of M(0), and B for segments of signals with and without 
peaks. 
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(a) 

 
(b) 

Figure 4. A signal x(t) with peaks (in blue) and the filtered signal xfilt(t) (in 
red). 

 
Figs. 4a and 4b show the same signal x(t) that in Figs 3a and 

3b but filtered with a NLMS adaptive filter. It can be noted 
that even the peaks are removed the xfilt(t) presents evident 
changes in the segment without noise respect to the original 
signal. The correlation coefficient and mean value of the 
coherence function were = 0.548 and  = 0.258, 
respectively. 
 

IV. CONCLUSIONS AND DISCUSSIONS 
 
A new algorithm for removing peak and spike noise from 

EEG is presented in this paper. This is based on filtering the 
analytic signal envelope. This algorithm preserves all 
information contained in the original signal phase, changing 
only the bandwidth of the envelope. It was tested on an EEG 
data set and compared with adaptive filters. A methodology to 
study the bandwidth of the envelope of signals with and 
without noise was designed. This has allowed a cutoff 
frequency of the low pass filter, used to filter the envelope, to 
be defined. Results showed that the cutoff frequency 
B≤0.0625 Hz was able to remove all peak and spike noise 
from the EEG, but preserving the physiological information. 
Correlation coefficient calculated when ASEF filter is used for 
the EEG data set was  >0.9 and the mean value of the 
coherence function  >0.85. 

An important aspect of the designed filter was that 
reference signal and multichannel recording are not needed. 
This is advantageous when it is necessary to minimize the 
number of channels of the recording. The results have shown 
the capability of the proposed filter ASEF in reducing the 
noise, preserving the frequency information and the position 
of zero crossings. 
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