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Abstract— A fully automated segmentation method of the 

left ventricle from short-axis cardiac MR images is proposed 

and evaluated. The segmentation is based on morphological 

filtering and gradient vector flow snake for which an automatic 

setting of parameters has already been proposed. The present 

work focuses on the automatic detection of a region of interest 

(ROI) surrounding the left ventricle, prior to the segmentation 

step. The whole process was applied to the MICCAI 2009 Left 

Ventricle Challenge database containing 45 subjects (9 healthy 

subjects and 36 with pathology). The automatic detection of the 

ROI was judged accurate in 86% of the cases. It failed in 2% of 

the slices and provided an overestimation in 9% of the slices. 

Furthermore, the endocardial segmentation was accurate in 

80% of the slices and the epicardial was judged satisfactory in 

71% of the slices. This fully automated procedure can thus be 

used as a first step in a user controlled approach, in order to 

reduce the total number of interactions. 

I. INTRODUCTION 

Many segmentation approaches have been proposed for 
cine short-axis cardiac magnetic resonance (MR) images. For 
instance, a recent review [1] selected 70 such methods, 
published on this topic. Our concern was to consider the 
applicability of methods in a clinical context. Due to its 
specific role in the blood circulation and to its pathological 
occurrences, the left ventricle (LV) is largely studied, 
pathologies of right ventricle being less frequent. One current 
goal of clinical MR studies is to obtain a reliable estimation 
of parameters that are useful for the current diagnosis or 
follow-up, such as end-diastolic volumes (EDV), end-systolic 
volumes (ESV), ejection fraction (EF), and myocardial mass 
(MM). For these reasons, our approach was deliberately 
focused on 3D segmentation of the left ventricle, rather than 
on a 4D segmentation, including the temporal dimension. To 
estimate the above mentioned parameters, the endocardium 
of the left ventricle was segmented at end-diastolic and end-
systolic phases. Furthermore, the epicardium was segmented 
at end-diastolic phase. The segmentation process was based 
on a previously developed semi-automated approach [2], for 
which the feedback was positive when compared to other 
existing methods [3]. But this method requires, for each slice, 
the definition by the user of a rectangular region of interest 
(ROI) including the left ventricle.   

Recently, we proposed different attempts to make this 
preliminary step more automatic. The first one was applied at 
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the “on line contest” of the Cardiac MR Left Ventricle 
Challenge (MICCAI challenge) [4] but still required some 
initialization through the definition of a parallelepiped box 
including the left ventricle). Moreover, it proved to be too 
simple. The second one [5] was fully automatic, but showed 
more than 20% of misplaced regions. Reasons for these 
misplaced regions were analyzed and led us to propose an 
improved version, presented here. 

The fully automatic method was applied to the 45 data-
sets of the MICCAI database [4]. To evaluate it in a standard 
way and to have a performance tracking system comparable 
to other teams, we first applied the evaluation code that was 
provided by the organizers of the MICCAI challenge and 
used the reference provided for this challenge. Furthermore, 
the clinical parameters EDV, ESV, EF, and MM were 
computed using customized software. Moreover, to measure 
the gap between the fully automated method and the semi-
automatic technique [2], results are given for both 
approaches. 

II. METHODS 

A. Basics of the semi-automatic and the automatic 

approaches 

 
Figure 1.  Flowchart of the fully automatic segmentation approach. ENDO 

stands for the endocardium and EPI for the epicardium. 

The semi-automatic method as described in [2] required 
the manual definition of a rectangular ROI including the LV. 
Inside this ROI, a preprocessing step consisted of a set of 
morphological filters using different values of the size 
parameter (from 5 to 80 % of the size of the ROI) and of an 
automatic choice of the size parameter. Then the filtered 
image was segmented using a gradient vector flow (GVF) 
snake with a priori set values for its parameters. Depending 
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on the quality of results, some slices could be segmented 
again using a different size parameter for the morphological 
filter and/or modified values of the GVF-snake parameters, 
implying additional user inputs. 

The automated steps of the previous approach 
(morphological filtering and GVF snake, with no “second 
chance” segmentation) were retained for the fully automated 
approach. In addition, the definition of the ROI including the 
LV was made fully automatic. Fig. 1 shows the general 
pipeline of the method, each step being further detailed in 
next subsections. 

B. Automatic detection of the cardiac region  

The detection of the cardiac region is based on the 
assumption that the heart is subject to motion whereas the 
other regions remain still during one cardiac cycle. The 
Parametric Analysis of Main Motion (PAMM) method [6] 
was thus applied to “3D+t” cine images,       ,   being a 
voxel and   the cardiac phase. PAMM models this dynamic 
volume of images by a non linear function of four 3D 
parametric images:                        , 

                                          , 

with                                else.            (1) 

  and    respectively correspond to the constant grey 
level and to the varying component of   during the cardiac 
cycle, whereas    and    are time values respectively 
corresponding to the beginning and the end of the local 
motion of contraction. They are estimated in order to 
minimize the error          A threshold equal to three times 
the mean grey level in    was applied to this 3D amplitude 
image       and 3D connected sets were extracted from the 
resulting binary volume. The biggest connected set was 
considered as the one associated to the cardiac structure. The 
smallest parallelepiped box including this largest set was 
defined as the cardiac region [5]. 

C. Automatic detection of the left ventricular region 

This step was performed in order to estimate a smallest 
region including the LV, and excluding as much as possible 
adjacent structures (the right ventricle, the liver or the lungs). 
This was necessary to make the next steps (morphological 
filtering and GVF-snake segmentation) more efficient. A 
circular Hough transform [7] was applied to each end-
diastolic slice restricted to the previously defined region of 
interest. We configured this procedure in order to detect 
several circles on each slice and allow the detection of 
concentric circles. It is thus highly sensitive but not specific 
enough for the detection of the LV. To detect LV, two simple 
rules were tested [5]. The first one computed the maximum 
intensity projection (MIP) of the detected circles, and the 
circles with the closest centers to the maximum of MIP image 
were selected. The second one was based on the a priori 
knowledge that the grey level within the left ventricular 
cavity should be high (high mean value  ) and homogeneous 
(low standard deviation  ). A mixed criterion        was 
thus computed for each circle, the circle having the largest 
criterion   was finally selected for each slice.  

Using the first rule, the number of misplaced regions reached 
33%; using the second rule, it was equal to 22%. 

Interestingly, the misplaced regions were different using the 
two rules, showing the advantage of making them cooperate 
to reduce this number of misplaced regions. Extending the 
idea exploited with the MIP rule, a 3D tracking of centers of 
circle was implemented. Using graph formalism, each center 
of circle formed a vertex. The value h was associated to each 
vertex, retaining the smallest circle in case of several 
concentric circles detected for one vertex. Directed edges 
from the apex towards the base were drawn to link pairs of 
vertices belonging to two consecutive slices, under the 
condition that the distance between projections of the two 
vertices in the same short axis plane be less than 10 pixels. 
Vertices from which no edge could be drawn towards the 
next slice were considered for linking with vertices of the 
following slice.  Once the graph was completed, the sum of 
the vertex weights h was computed for each path and the path 
with the highest value was selected. The corresponding 
circles were then selected on each slice (Fig. 2). 

 

Figure 2.  Centers of circles (red crosses) detected by the circular Hough 
transform on twelve consecutive slices. Corresponding graph and path 

detection: one in the LV (detected as optimal) and one in the lungs. 

In some slices, the path was inside the cardiac structure 
but with possible centers in the septum or in the right cavity. 
Thus an additional refinement was systematically applied. 
Inside the box including the circle, a fuzzy k-means 
procedure was performed searching for two classes: a low 
intensity class associated to the myocardium, the lungs and 
possibly the pillar, and a high intensity class associated to the 
left and possibly the right cavities [8]. Connected sets 
associated to the high intensity class were labeled and the 
center of mass of the largest one was assumed to be the 
center of the left cavity and was noted P0. Consistency of P0 
points estimated on adjacent slices was finally checked to 
ensure a 3D continuity of these points. The rectangular box 
including this connected set provided the final ROI 
surrounding the left ventricle, within which further 
segmentation of end-diastolic and end-systolic images was 
performed (Fig. 3). 

 

Figure 3.  a) ROI obtained after searching for the optimal 3D path. b) 

classes estimated by the k-means procedure c) cropped image within the 
final ROI, centered in P0 
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D.   Segmentation of the endocardium 

The conventional slice by slice approach that was 
developed for the semi-automated approach including 
morphological filtering and GVF-snake [2] was applied with 
automated detection of the size parameter for the 
morphological filter, and GVF-snake using a priori set 
parameters (Fig. 4). A small circle (3 mm radius) centered in 
P0 was used as the initial snake  . The snake evolution was 
driven by its internal energy and external energy (2). Internal 
energy was controlled by two parameters, α and β, weighting 
respectively the elasticity and the rigidity of the snake. The 
external energy was a function of the pressure parameter κp 
applied to the normal of the snake   and the weight κ 
associated to the gradient vector flow. The gradient vector 

flow    was estimated from the image gradient using a 

regularization parameter µ. 
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.           (2) 

 The same set of parameters was defined for end-diastolic 
and end-systolic images                            
      

 

Figure 4.  a) Segmentation of the endocardium (in red color) and definition 

of the mask (in yellow color) for the estimation of the epicardium b) 
resulting segmentation of the epicardium (in green color). 

E.  Segmentation of the epicardium 

 The segmentation the epicardium was based on the 
previous segmentation of the endocardium: the search region 
was limited to a ring mask inside which the contour points 
were estimated. Inner border was defined automatically at a 
distance of 2.5 mm of the endocardial contour and outer 
border at a distance of 20 mm (Fig. 4). Then GVF-snake 
segmentation was applied using the inner contour as 
initialization, each contour point going outside the mask 
being replaced by its nearest point on the mask border. Once 
again, parameters were set a priori, according to (3): 

                                      .          (3) 

F.  Evaluation criteria 

A manual delineation by experts was provided in the 
framework of the MICCAI Challenge. This contour was 
considered as the reference to compute the performance 
measures defined for the MICCAI Challenge using the code 
provided by the organizers. Thus, the percentage of “good 
contours” (for which the average perpendicular distance is 
less than 5 mm), the average perpendicular distance and the 
Dice index were reported for each patient. Each measure was 
computed slice per slice and a mean value for all the slices 
was finally given. However these two latter parameters were 
only computed for “good contours”. To overcome this 
limitation, clinical parameters including EDV, ESV, EF, and 

MM were computed using all available contours. They were 
estimated using customized software. 

III. RESULTS 

A.  Automatic detection of the ROIs 

The extraction of the cardiac ROI and of the left 
ventricular ROI was visually assessed in order to check the 
first steps of the automatic procedure.  

TABLE I.  VISUAL ASSESSMENT OF AUTOMATICALLY DEFINED ROI 

Percentage 
Type of Regions of Interest 

Cardiac  Left Ventricular  

misplaced 0% 2% 

too small 3% 3% 

too large 78% 9% 

correct 19% 86% 

 

 
Figure 5.  Examples of outer ROI surrouding the cardiac region (green 

box) and inner ROI (blue box). Associated segmentation of the 
endocardium (in red color) a) misplaced inner ROI resulting in the 

segmentation of the right ventricle, b) succesful segmentation. 

B.  Automatic and semi-automatic segmentation methods 

Results are extensively given for both segmentation 
approaches in order to make the comparison easier. 

Tables II and III give the percentage of “good contours”, 
the mean average perpendicular distance, and the Dice index 
that were computed for each patient (mean ± standard 
deviation, [min-max]) as they are estimated using the 
evaluation software provided by MICCAI organizers. 

TABLE II.  IMAGING CRITRIA FOR THE ENDOCARDIUM 

Percentage 
Type of segmentation 

Semi-automated  Fully automated  

% of good 

contours 
91±8 [61-100] 80± 16 [29-100] 

APD (mm) 1.94±0.42 [1.17-3.03] 2.44 ±0.56  [1.31-4.20] 

Dice index 0.89±0.04 [0.80-0.96] 0.86 ±0.05  [0.72-0.94] 

TABLE III.  IMAGING CRITRIA FOR THE EPICARDIUM 

Percentage 
Type of segmentation 

Semi-automated Fully automated 

% of good 

contours 
91±10 [70-100] 71 ±26 [0-100] 

APD (mm) 2.38±0.57 [1.28-3.79] 2.80 ±0.71 [1.37-4.88] 

Dice index 0.92 ± 0.02 [0.84-0.95] 0.91 ±0.03  [0.81-0.96] 

3209



  

 
The clinical parameters EDV, ESV, EF, and MM 

obtained by both approaches were compared them to the 
reference values using linear regression and Bland-Altman 
analysis. Tables IV, V, VI, and VII synthesize these results 
and provide the slope (a), the intercept at the origin (b), the 
correlation coefficient (r) of the regression analysis, and the 
bias ± standard deviation of the Bland-Altman plot. 

TABLE IV.  END-DIASTOLIC VOLUMES 

Comparison 

with 

reference 

Type of segmentation 

Semi-automated  Fully automated  

Regression 

analysis 
a=0.99, b=-1.25, r=0.99 a=0.95, b=-3.23, r=0.96 

Bias ± SD 2.65 ± 14.92 ml 11.82 ± 23.06 ml 

TABLE V.  END-SYSTOLIC VOLUMES 

Comparison 

with 

reference 

Type of segmentation 

Semi-automated  Fully automated 

Regression 

analysis 
a=0.98, b=-5.96, r=0.99 a=0.91, b=-8.54, r=0.98 

Bias ± SD 7.86 ± 12.47 ml 19.51 ± 20.12 ml 

TABLE VI.  LEFT VENTRICULAR EJECTION FRACTION 

Comparison 

with 

reference 

Type of segmentation 

Semi-automated  Fully automated 

Regression 

analysis 
a=1.03, b=0.021, r=0.94 a=0.96, b=0.095, r=0.91 

Bias ± SD -0.034 ± 0.074 -0.076 ± 0.089 

TABLE VII.  MYOCARDIAL MASS 

Comparison 

with 

reference 

Type of segmentation 

Semi-automated  Fully automated 

Regression 

analysis 
a=1.20, b=-13.61, r=0.91 a=0.38, b=46.79, r=0.44 

Bias ± SD -11.68 ± 25.85 g 31.43 ± 43.45 g 

 

IV. DISCUSSION 

The method that we proposed in this paper was to define 

automatically a ROI around the left ventricle in order to 

further segment it using GVF-snakes on filtered images. To 

achieve it, a priori information related to the cardiac motion, 

the circular shape of left cavity on short-axis slices, and 

spatial continuity between slices was used. This approach 

was applied to a database containing 45 patients for which 

contours drawn by an expert were available. All results 

indicate that the fully automated approach is very promising: 

the number of “good contours” (contours having an average 

perpendicular distance less than 5 mm) reaches 80% for the 

endocardium, including diastolic and systolic phases, and is 

superior to 70% for the epicardial contours.  

Compared to our previous works, the improvement 

brought by this new automatic approach is substantial. 

Indeed, the definition of the ROI around the left ventricle is 

accurate in 86% of the slices, with a drastic reduction of 

misplaced regions - 2% when compared to more than 20% 

reported in [5]. The definition a ‘too large’ ROI, which 

occurs in 9% of the cases, is problematic for the further steps 

of the algorithm; indeed the choice of the size parameter in 

the morphological filtering can yield erroneous contours. 

Of course the evaluation shows that the semi-automated 

approach works better, which is due to the authorized 

modification of parameters in case of incorrect contours. 

Due to its low computing time (about one minute per patient 

using a source code in Matlab® which could be optimized), 

this fully automated approach could be used as an initial 

segmentation. For instance, it can be combined with the 

semi-automated approach for clinical research applications. 

Previous work comparing three manual and five automated 

segmentation methods [3] has shown that our semi-

automated method, although being 2D, was the closest to 

experts’ performance. Thus the prior run of the fully 

automated approach will help to reduce the number of user 

interactions, since only few slices per patient need to be 

reworked.  

Moreover, to improve the quality of the fully automated 

approach, some ideas are currently under investigation. The 

most promising consists in defining the size of the mask for 

the epicardial segmentation specifically for each patient.  

Indeed, it could yield a better estimation of this contour for 

hypertrophic patients (having a larger myocardium) or 

patients having a cardiac remodeling due to heart failure.   
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