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Abstract—In this paper, we introduce a visualization tool for inter-
active and efficient exploration of high dimensional data using parallel
coordinates. An algorithm is developed to find an optimal permutation
of dimensions, which allows the data miner to immediately see the most
important features or irregularities in the dataset. This is implemented
as a genetic algorithm based on the travelling salesman problem using
maximal correlation as fitness. Other features of the tool include selection
operators to group the data such as selection by intersection or by angle,
orthogonal and density plots complementing the parallel coordinates plot,
manual arrangement of permutation order of the dimensions, possibility
to show all plots necessary to see all dimensional relations and displaying
a certain number of standard deviations for each dimension separately.
The tool is applied to multiple gene prioritization cases in search of
genes that are relevant to certain genetic disorders. The used datasets are
obtained with the MerKator and Endeavour tools and include a Breast
cancer, Cataract, Charcoth-Marie-Tooth and Cardiomyopathy dataset, as
well as a dataset relating 29 diseases with 22206 genes. Our tool, manual
and data can be downloaded from http://www.toomas.be/parcoord/.

Index Terms—data visualization, parallel coordinates, genetic algo-
rithm, gene prioritization

I. INTRODUCTION

Data mining is in essence the extraction of relevant information
from large datasets. Usually, it is not known in advance which
information one is trying to find. This is why visualization is so
important; it can reveal small irregularities by transforming the data
to a more intuitive and clear form. These irregularities are easy to
spot visually but very hard to define mathematically. Due to the huge
amount of data being generated by modern experimental methods in
all areas, the need for efficient data visualization rapidly increases.

Traditional data visualization methods usually deliver poor results
when applied to large datasets. Parallel Coordinates is a technique
in which datapoints in an orthogonal coordinate system are projected
onto parallel axes, which transforms these points to polygonal lines
(see Section 2). This technique does not suffer from the curse of
dimensionality as much as for example the scatterplot technique.
However, it is thought that interactivity plays a large role in the
effective use of parallel coordinates.

One of the emerging fields in which visualization is very relevant is
gene prioritization, which is the ordering of a list of candidate genes
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according to relevancy with respect to certain biological processes
(usually hereditary diseases) in order to obtain the most promising
genes (see Section 2). Several gene prioritization tools which try
to automate this process by using supervised machine learning
techniques and statistical tools are available. The result of these
tools is an ordered list or selection of genes that have the highest
probability of influencing the disorder. Usually, it is very hard to
intuitively understand these results without visual aid.

A program (hereafter called ParCoord) is developed using Java, the
Processing library [1] and the Watchmaker framework [2] to visualize
high dimensional datasets (see Section 3).

To find a good permutation order of the dimensions (to be able
to immediately see the most interesting features of the data), a
method was developed based on the solution to the Travelling
Salesman Problem using a genetic algorithm. As to what constitutes
a good permutation order, two routes are explored: 1) An ordering
is good when it enables interesting patterns to emerge. In this case
a measure for what constitutes an interesting pattern is needed. 2)
An ordering is good when it hides certain aspects of the data so
that interesting irregularities become more prominent. The genetic
algorithm is implemented and tested in the ParCoord program (see
Section 4) and several gene prioritization datasets are analyzed with
it (see Section 5).

II. BACKGROUND AND RELATED WORK

The main parallel coordinates theory used to design the program
can be found in Inselberg’s book [3], which focuses mainly on the
underlying geometry, however there is also a standalone chapter
on data mining present. Several papers discuss the possibility of
changing the permutation order: in [4], the clutter is defined as the
proportion of outliers against the total number of data points, and
this clutter is minimized by reordering the axes. In [5], the idea
of Similarity-Oriented Dimension Ordering is explored, in which
dimensions with similar patterns are placed adjacently. The problem
of rearranging dimensions in a parallel coordinates plot is closely
related to a travelling salesman problem (TSP). A genetic algorithms
approach is thought to be able to find a very good (but not necessarily
optimal) solution very fast for these kinds of problems. The main text
used to program the Genetic Algorithms is ’Genetic algorithms and
genetic programming: modern concepts and practical applications’
[6]. A special crossover operator was used, namely a modified version
of the Sequential Constructive Crossover (SCX), as defined in [7].
Thorough reviews to better understand gene prioritization and how
the datasets were generated are presented in [8] and [9].
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III. ParCoord PROGRAM

The main reason to develop the ParCoord program was that none
of the previously existing parallel coordinates plotting tools seem to
possess all of the features of the ParCoord program described below:

• Loading datasets: Most delimiter-separated values (DSV)
datasets can be loaded. Dimension labels can be loaded sep-
arately or included as first line of the data file. Infinity values
are plotted as 110% of the maximum value in each dimension.
Datapoints containing missing values are plotted as an inter-
rupted line. The values in discrete dimensions (finite number of
possible values) are plotted equidistantly.

• Identifiers: Each datapoint can be labeled by an identifier. This
enables the user to select certain datapoints and immediately see
a list of corresponding identifiers or vice versa.

• Groups: Each datapoint is part of a specific group, and each
group has a colour. For example: when loading a new dataset,
all datapoints are part of the “red” group and the polygonal lines
representing these datapoints are coloured red. Each group’s
opacity can be changed from 0 to 255 to make the plot clearer
for huge datasets. This way, the density (number of lines) of
each group can be estimated at each location. Lines can be
made invisible, which is useful when certain groups have to
be excluded from possibly being selected.

• Switching Permutation Order: The permutation order of the
dimensions can be changed manually. The program can also
calculate a number of permutations necessary to see all the
relations between dimensions and switch between these permu-
tations. For an N-dimensional dataset, the remaining dN

2
e − 1

permutations are obtained from the first very easily by adding
1 to each element in the permutation (modulo N) successively
to obtain each new permutation. Several genetic algorithms are
included to find “optimal” permutation orders.

• MinMax and SDs: There are two possible modes in each
dimension: MinMax plots the datapoints so the minimum value
appears at the bottom of the axis and the maximum value appears
at the top of the axis. SDs plots the data so the mean of the
data is exactly in the middle of the axis, and a certain number
of standard deviations is displayed. In this mode, there are
two variables that can be changed for each axis separately: the
number of standard deviations to be plotted and where the mean
should be located on the axis. The SDs mode is especially useful
when outliers are present. In most of the traditional parallel
coordinate plotting programs, something similar to the MinMax
mode is used, which obscures the plot a great deal when there
are outliers present; all the other data is squished together. The
SDs mode can also be used for zooming purposes to carefully
scrutinize the plot.

• Values on axes: When hovering over the axes, the values are
displayed. If the axis is in MinMax mode, the original values are
shown. If the axis is in SDs mode, then the number of standard
deviations from the mean (normalized value) is displayed, as
well as the original value. If the axis is discrete, then the closest
category is displayed.

• Density plot: There is a density plot present: it shows a
histogram for each dimension separately. This density plot also
takes groups into account, so when there is for example a red
group of datapoints and a blue group of datapoints, then the
density plot also shows red histograms and blue histograms for
these groups separately. The density plot changes in real time
when selecting groups.

• Orthogonal coordinates plot: For each two adjacent dimen-
sions, it is possible to show an orthogonal plot of the plane
formed by these dimensions.

• SelectLines: It is possible to select specific datapoints very
easily by clicking-and-dragging the mouse: all the polygonal
lines intersecting the line formed by the dragging of the mouse
will be selected and coloured according to the active group.

• SelectAngles: It is also possible to select datapoints by the angle
formed by the line representing this datapoint inbetween two
dimensions and a horizontal line. So, for example, in a parallel
coordinates plot with dimensions X, Y and Z, you can select
all the lines that have an angle of 45 degrees (or a slope of
1) between dimensions X and Y. There is also the option of
selecting a certain range for the angle e.g., all the lines with an
angle between 35 and 55 degrees.

• SelectOrthogonal: In the orthogonal coordinates plot, datapoints
are selected by drawing a line in the plot, separating the
datapoints into two groups.

• Complex selections: What makes these selection tools very
useful is the possibility of combining selections: performing one
selection after the other, the specific set of datapoints needed can
be formed or “cut out” of the dataset. Groups can be hidden, so
that selections do not influence them.

• Synchronized Plots: When making changes in the parallel,
orthogonal or densities plot, the other two plots are updated
automatically.

IV. PERMUTATION ORDER GENETIC ALGORITHM

To see all relations between dimensions, dN
2
e different permutation

orders have to be generated. It would be useful to generate a permuta-
tion order automatically in which all interesting relations are present.
A possible approach is maximizing correlation, which is possibly
not only important in itself (in the sense that correlated variables
are interesting features of the data), but also to be able to see other
features or irregularities better e.g., positive correlation minimizes
crossing lines in the parallel coordinates plot which makes it more
clear. Two correlation measures are used, namely Pearson’s (linear)
correlation and Spearman’s (rank-based, monotonic) correlation.

The problem of finding an optimal permutation order according
to a specific measure strongly resembles a Travelling Salesman
Problem (TSP). Each node in the graph is a dimension and each
edge in the graph is a possible pair of dimensions. Each edge has an
associated value with it according to a specific measure e.g., Pearson’s
correlation measure between the two dimensions. In a regular TSP,
edges are typically associated with (Euclidean) distance values and
the path to be found is a closed loop (Hamiltonian cycle). In the
dimension ordering problem, the path to be found is an open “route”
(Hamiltonian path in a graph) because the last and first dimension in
a parallel coordinates plot are not connected.

A genetic algorithm typically consists of a genotype representation
of the individual, a mutation operator, a crossover operator, selection
operators, a fitness function and an initial population. Each new
generation is formed by the selection of individuals from the previous
generation according to fitness (how well the specific individual
solves the problem). The selected individuals are crossed over and
mutated with a certain probability.

The dimension ordering genetic algorithm is implemented in Java
using the Watchmaker framework [2]. We use a path representation
as genotype, with random permutations as initial population. The
mutation operator is a simple reciprocal exchange mutation: two
dimensions in the route are simply swapped. The used crossover
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operator is Sequential Constructive Crossover (SCX) [7]. The se-
lection operator is rank-based Stochastic Universal Sampling (SUS)
[10]. The fitness function is the sum of absolute values of a certain
correlation measure for each pair of dimensions present in the
permutation. The population exists of 160 individuals and remains
constant. The algorithm is run for 800 generations. The five percent
fittest individuals in each generation is automatically inserted in the
next generation (elitism).

The genetic algorithm can be used for very high dimensional data
to extract a lot of information without having to display a large
number of parallel coordinates plots. Niching (e.g., crowding, fitness
sharing) can potentially be used to obtain several highly interesting
but maximally dissimilar permutations (i.e., without much overlap of
dimensional pairs).

More information and experiments regarding the implementation
of the algorithm can be found at http://www.toomas.be/parcoord/.

V. APPLICATION TO GENE PRIORITIZATION

Gene prioritization consists in predicting which candidate genes
are promising with respect to a disease under study. More precisely,
candidate genes that are highly similar to the known disease genes
are considered promising, and therefore should be investigated first.
Several gene prioritization tools have been developed in the last
decade [8] and they rely on many genomic databases [8]. There are
two main classes of databases: 1) prior knowledge about different
disease-gene links (e.g., genes that are already known to play an
important role in the development of the genetic disorder) and 2)
gene-gene links and individual gene information. The gene-disease
links and the gene-gene links can be combined to compare the genes
that are known to play a role in the development of the disorder
with the input candidate genes. This way the candidate genes can be
prioritized or a selection of the most promising genes can be made
using statistical or machine learning techniques.

To illustrate the features of the ParCoord program and to demon-
strate its usefulness when dealing with gene prioritization, three case
studies are performed. The data used in all three cases was obtained
using either MerKator [11] or Endeavour [12], two gene prioritization
tools. These two methods combine several data sources in order to
derive a global ranking. Briefly, the following data sources were used
(see [11] and [12] for a more thorough description):

• Text Mining Data: the associations between genes and on-
tological terms resulting from a text mining approach of the
MEDLINE corpus [13] [14].

• Functional Annotation Data: association between genes and
specific functional terms. A lot of this data is not yet experimen-
tally verified. This category includes Interpro (terms are active
protein domains [15]), Kegg (terms are biological pathways
[16]) and EnsemblEst (terms are tissues [17]).

• Expression Data: this measures the level of activity of the
genes in several tissues. Data derived from Son et al. [18]
(168 human tissues including replicates) and Su et al. [19] (168
mouse and rat tissues including replicates, mapped to human).
In this case, the raw expression values are extracted from the
microarray experiments (different from EnsemblEST, for which
binary values are computed - either a gene is active or inactive
in a tissue).

• Protein-Protein Interactions: Proteins that interact with each
other usually do so to exert a common function, which means
genes that code for physically interacting proteins are more
likely to have disease dependencies. Examples of used databases
are Bind [20] and Biogrid [21].

• Regulatory information: ‘controller’ proteins can bind in front
of ‘controlled’ genes, in order to change their activity. The Motif
data tries to capture this by analyzing which binding motifs are
present in the upstream sequences of the genes [22].

• Blast: protein sequence similarities between all proteins pair-
wise computed using NCBI Blast (Sig filtering, max e-value set
to 1000, other parameters set to default) [23].

A. Visualizing Single Disease Prioritizations

The first dataset (Case 1) contains prioritizations for four diseases
(breast cancer, cardiomyopathy, Charcoth-Marie-Tooth and cataract)
obtained using MerKator. For each disease, there are in total 10603
genes and 11 dimensions, 10 of which represent the gene scores
computed using the databases mentioned above. The last dimension
is the global (aggregate) score, calculated by Merkator from the 10
individual scores. Note that there are a lot of missing values in this
data. In our system, a missing value means that there is no value for
one of the dimensions, the other values are kept and the corresponding
lines are drawn.

Looping through the six permutations necessary to see the relations
between all dimensions (also using the opacity feature and grouping
the high, medium and low global scores together with the SelectLines
tool), it is obvious that the global score (“GRS”) is highly linearly
(positively) correlated with the Biogrid score. Text is also correlated
with the global score but in a different way. From Fig. 1 (a), it
seems that datapoints with high global scores are likely to also
have a high Text score, while those with a low global score do not
seem favoured in any way concerning the Text ranking. The relation
between global and Text scores seems to be a logical implication.
This seems intuitive: in the corpus of scientific literature about Breast
cancer, the genes that are never talked about have a high likelihood
of not having any influence on Breast cancer, while the genes that
are known to have a large influence on Breast cancer are likely to
be frequently mentioned in the literature. However, genes that are
frequently mentioned in the Breast cancer literature do not necessarily
have a large influence on Breast cancer. Fig. 1 (b) confirms these
findings.

(a) Parallel coordinates plots of
Text, global score (GRS) and Bi-
ogrid

(b) Orthogonal coordinates plots of
Text-GRS plane and Biogrid-GRS
plane

Fig. 1: Breast Cancer data

In the Breast Cancer dataset, the datapoints with the highest
EnsemblEst scores dont seem to have high scores in other dimensions.
This in contrast to the data of another genetic disease namely
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Cardiomyopathy, where the datapoints with the highest EnsemblEst
scores have a high probability of having high SonEtAl, SuEtAl,
Interpro, Text and Bind scores. This means that for the Breast cancer
case, the genes which are expressed in the same tissues as the Breast
cancer genes (so the datapoints with high EnsemblEst scores) are not
more likely to have other high scores: somehow Breast cancer genes
are not expressed exclusively in the same tissues. This in contrast to
Cardiomyopathy genes, which seem to have a common expression
pattern (see Fig. 2).

(a) Breast cancer dataset

(b) Cardiomyopathy dataset

Fig. 2: Parallel Coordinates plot of Breast Cancer data with highest
EnsemblEst scores in blue

To illustrate the use of identifiers, the top global score genes in
the Breast cancer dataset are selected and grouped together in the
Cardiomyopathy set. It seems the high score Breast cancer genes also
score very well globally for Cardiomyopathy (see blue lines in Fig. 3,
note that Text and global score are highly correlated). To see if this is
true in general (for each disease), a parallel coordinates plot is created
using the global scores of each disorder. In Fig. 4 (a), genes with a
high value in the Charcoth-Marie-Tooth dimension are highlighted
in blue. It is clear that these also score well for the other diseases.
This observation is found to be true for each of the four diseases,
which is in agreement with the work of Gillis and Pavlidis who report
that guilt-by-association methods tend to introduce a systematic bias
towards multifunctional genes [24] [25].

Fig. 3: Parallel coordinates plot of Cardiomyopathy dataset with genes
that have high global score for Breast cancer in blue

B. Visualizing Multiple Disease Prioritizations

We then extend our analysis to study several diseases at once.
Using Endeavour, prioritizations are run for 29 selected diseases [12].
Two extra datasets with 29 dimensions are then created (Cases 2 and

Fig. 4: Parallel coordinates plot of global ranking scores for all four
diseases with top global scores for Charcot-Marie Tooth in blue

3), for which each dimension contains the global (aggregate) scores
for a specific genetic disorder. The number of genes however differ.
The 538 genes that are known to be involved in any of the 29 diseases
are in Case 3. The remaining 22206 genes are in Case 2. Notice that
for Case 2, only the first 13 dimensions are analyzed.

After changing the permutation order and using the opacity and
zooming tools, some interesting irregularities are found. The irreg-
ular genes can be highlighted by combining the SelectAngles and
SelectLines tools to create complex selections (Fig. 5).

(a) Zooming in on irregularities be-
tween Ehlers-Danlos and deafness
dimensions (black arrow indicates
irregularity)

(b) Selection by SelectAngles tool
(in green) and subsequently Select-
Lines tool (in blue)

Fig. 5: Highlighting irregularity between Ehlers-Danlos and deafness
dimensions

Fig. 6 shows the irregular genes in blue. These genes seem to have
a very common pattern over all diseases. Checking the dataset, it is
indeed clear that these genes have extremely similar values, but they
are not identical. Now that the irregular genes are separated from the
rest, their names can be extracted using identifiers.

Fig. 6: Irregularities between Ehlers-Danlos and deafness dimensions in
the Case 2 parallel coordinates plot (in blue)

The Case 3 data contains only the disease-genes (genes that are
known to influence at least one of the 29 diseases). In figure 7
(b), two genes that score extremely high for all diseases except
for Parkinson’s, Neuropathy and Anemia are indicated in blue
(Ensembl Gene IDs: ENSG00000176124 and ENSG00000116652).
Another exceptional gene is indicated in green: it scores extremely
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well for all diseases except for Parkinson’s (Ensembl Gene ID:
ENSG00000183566). Most genes score high/medium for a few
diseases and don’t score well at all for the rest of the diseases.
Another feature of the data that is immediately obvious is the positive
correlation between Anemia and Leukemia (Fig. 7 (a)).

(a) Anemia-Leukemia indicated with arrow

(b) Outliers in green and blue

Fig. 7: Parallel coordinates plot of all 29 dimensions of the Case 3 data

C. Permutation Order Genetic Algorithm

The genetic algorithm is applied to the Case 2 dataset. The
resulting plot clearly has less “X” patterns (which are caused by
negative correlation patterns), as can be seen in Fig. 8 (b). In Case 2,
all dimensions are positively correlated to a certain extent, but only
the most correlated dimensions are shown which results in less visible
“X” patterns (negative correlation patterns are less likely to be present
in highly positively correlated dimensions). Fig. 8 (c) is obtained
by applying the genetic algorithm using minimum correlation as a
measure instead of maximum correlation. The “X” patterns are clearly
more pronounced in this case.

The majority of highly correlated dimension pairs can be found
without having to plot the 15 permutations necessary to see all
relations between dimensions. Note that the goal in this case is not
finding the most correlated pairs, it is finding a permutation order in
which as many highly correlated pairs as possible are present.

The highly correlated disease pairs seem to be mental retardation
↔ Hemolytic Anemia, Leukemia ↔ Anemia, Muscular Dystrophy
↔ Dystonia and to a lesser extent Colorectal cancer ↔ Zellweger
syndrome, Anemia ↔ Retinitis Pigmentosa and Breast cancer ↔
Mental retardation. This can be seen in Fig. 8 (b) by the absence of
“X” patterns. It is interesting to see that some of these disease pairs
are expressed in the same tissues. Lowly correlated disease pairs are
Ichthyosis ↔ Anemia and Retinitis Pigmentosa ↔ Anemia.

Zooming in on both plots (before and after genetic algorithm),
it seems easier to spot patterns in the second plot. A possible
explanation is the fact that the “X” pattern is gone and there’s an
almost flat red space visible, in which it is much easier to spot
patterns (so the reordering can hide certain aspects of the data in
order for interesting irregularities to become more prominent). A
second explanation is that particular patterns only become visible
between highly correlated dimensions. It is now clear that sometimes
maximizing positive correlation is not only important in itself (in the
sense that correlated variables are interesting features of the data),
but also to be able to see other features or irregularities better. In

(a) As is (before applying genetic algorithm)

(b) After applying genetic algorithm (Pearson’s correlation version), maximum
correlation

(c) After applying genetic algorithm (Pearson’s correlation version), minimum
correlation

Fig. 8: Case 2 dataset Parallel Coordinates plots, opacity: 2

Fig. 9, the obvious patterns are indicated with blue ellipses. These
patterns are clearly visible in both plots. Some more obscure patterns
are only visible in the second plot (black ellipses). In Fig. 12, the
Pearson’s correlation for each pair of dimensions is shown.

(a) As is (before applying genetic algorithm), zoomed

(b) After applying genetic algorithm (Pearson’s correlation version), zoomed

Fig. 9: Case 2 dataset parallel coordinates plots, opacity: 2, obvious
patterns visible in both plots (blue ellipses), less obvious patterns only
visible after genetic algorithm (black ellipses)

To quantify the results of the genetic algorithm, an experiment
is performed on the case 3 dataset. The algorithm’s fitness function
is set to maximize the sum of all Pearson’s correlations between
adjacent dimensions (negative correlation meaning weak fitness).
The algorithm is run on 100 random initial permutations, and for
each of these 100 runs, the mean of Pearson’s correlations between
adjacent dimensions is calculated, and the same is done for the 100
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(b) Using genetic algo-
rithm favouring highly
correlated pairs
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(c) Using genetic algo-
rithm favouring lowly
correlated pairs

Fig. 10: Pearson’s correlation for each pair of dimensions in the parallel
coordinates plot for the Case 2 dataset after applying genetic algorithms
(Pearson’s correlation versions), pairs are in same order of display as in
parallel coordinates plots.

permutations resulting from the application of the genetic algorithm.
This is followed by the calculation of the mean and standard deviation
of these mean correlations before and after the application of the
genetic algorithm. The results are as follows: a mean correlation of
0.55 with a 1.65e-2 standard deviation before and a mean correlation
of 0.72 and a standard deviation of 1.12e-3 after the application of the
genetic algorithm. It is clear that the mean correlation is higher after
the application of the genetic algorithm while the standard deviation
is divided by more than a factor of ten.

VI. CONCLUSION

The ParCoord program can be used to efficiently analyze high
dimensional datasets of any kind, and is also very useful for the ex-
traction of possibly relevant genes regarding specific genetic disorders
in the gene prioritization field. A genetic algorithm is designed to find
a permutation order which reveals the most useful information about
the data. Only two measures of how interesting a permutation is were
tried (Pearson’s correlation and Spearman’s correlation), but many
more should be tested. The additional benefit of using a correlation
measure is the decluttering of the plot.
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