
  

  

Abstract— A signal processor/compressor dedicated to 
implantable neural recording microsystems is presented. Signal 
compression is performed based on Haar wavelet. It is shown in 
this paper that, compared to other mathematical transforms 
already used for this purpose, compression of neural signals 
using this type of wavelet transform can be of almost the same 
quality, while demanding less circuit complexity and smaller 
silicon area.  

Designed in a 0.13-μm standard CMOS process, the 64-
channel 8-bit signal processor reported in this paper occupies 
113μmx110μm of silicon area. It operates under a 1.8-V supply 
voltage at a master clock frequency of 3.2MHz.  

I. INTRODUCTION  
OWADAYS, implantable neural recording micro-devices 
are of increasing interest in neuroscience research, 

curing neural disorders, and also in prosthetic applications. 
Being implantable, means that such systems cannot have any 
hardwired connection to the outside. Therefore, they receive 
electric power and also communicate data with the outside 
world through wireless connection [1-3]. Large number of 
recording channels (in the order of hundreds of channels) is 
of great importance in increasing the neural information 
recorded as well as in enhancing the spatial resolution of the 
recordings. According to the available frequency allocation 
regulations, the frequency bands that can be used for data 
communication for this purpose are not unlimited in 
bandwidth. As a result, to transmit the data recorded on 
high-density electrode arrays, one needs to somehow refine 
or compress the signals.  

To be able to handle hundreds of neural channels, in some 
works, only the occurrence of spikes is reported to an 
external host [1]. For detailed studies, it is sometimes useful 
to telemeter waveshape of action potentials. The processor 
reported in [2] detects neural spikes based on automatic 
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calculation of two threshold levels to compare the signal 
with. To be able to telemeter as much information as 
possible from a neural recording implant to the outside 
world, digital signal processing (DSP) techniques have 
proved to be effectively useful. From among the different 
possible DSP solutions, mathematical transforms such as 
Walsh-Hadamard transform [4] and discrete wavelet 
transform [5-7] have been recently employed successfully.  

This work proposes discrete wavelet transform with Haar 
basis function for the processing and subsequently 
compression of neural signals. This proposition is mainly 
because of simpler and more compact electronic 
implementation compared to other techniques, which leads 
to smaller physical size and lower power consumption. 

II. SYSTEM DESCRIPTION 
Fig. 1 shows a simplified general block diagram for a 

typical implantable multi-channel neural recording micro-
device. After signal preconditioning and conversion from 
analog form into digital domain, multiple neural signals are 
then delivered to a neural processor. Such a processor 
usually performs data reduction/compression techniques and 
algorithms in order to more efficiently utilize the limited 
bandwidth available for wireless data telemetry to the 
outside world.  

The digital neural processor presented in this paper is 
designed for a 64-channel neural recording system. The 
neural signals sensed by an electrode array are amplified 
with a gain of ~60dB, band-pass filtered with a pass band of 
around 10Hz to10kHz, and digitized with a resolution of 8 
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Fig. 1: Signal processor in an implantable neural recording device 
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bits at 20kSample/Sec. The processor is designed to reduce 
the amount of telemetered data by preserving action 
potentials and discarding the background noise.  

III. DATA COMPRESSION TECHNIQUE 
Discrete wavelet transform (DWT) has been already 

introduced as a successful approach for the compression of 
neural signals. For instance, DWT with symmlet4 basis 
function is reported in [5,6] as a successful data compression 
algorithm in neural recording. It is believed that symmlet4 
was preferred to other basis functions in this specific 
application because of its similarity to the wave shape of 
action potentials in neural signals. Price of the exceptional 
data compression using this basis function is, however, paid 
by rather considerable circuit complexity. This is translated 
into large silicon area and high power consumption when the 
circuit is physically implemented. These drawbacks are not 
welcomed in implantable neural recording microsystems, 
where small physical size and low power operation are of 
crucial importance. The digital multipliers required to realize 
DWT with basis functions such as high-order Daubechies 
and symmlet are indeed the main cause of the problem. 
Although smart circuit solutions have been proposed in [5] 
to overcome this issue, signal processing circuitry for neural 
recording implants yet need to be more compact in size and 
less power consuming, especially for high density recording 
(i.e., large number of neural channels).  

In this paper, discrete Haar wavelet transform (DHWT) is 
proposed for neural signal processing. Haar basis function 
may not perform as efficient in data compression as complex 
functions such as some of high-order Daubechies and 
symmlet, but it is implemented with much less circuit 
complexity. This is of crucial importance in the design of 
implantable devices. 

In the case of a two-point DHWT, for every two 
consecutive signal samples, S(2m) and S(2m+1), two 
coefficients are defined as:  

஺ሺ݉ሻܥ ൌ ଵ√ଶ ሾܵሺ2݉ሻ ൅ ܵሺ2݉ ൅ 1ሻሿ     (1.a) 
and ܥ஽ሺ݉ሻ ൌ ଵ√ଶ ሾܵሺ2݉ሻ െ ܵሺ2݉ ൅ 1ሻሿ     (1.b) 

known as approximation and detail coefficients [8]. To have 
a simple digital implementation, coefficients CA and CD are 
scaled by a factor of √2. As a result, calculation of DHWT 
coefficients reduces to simple addition and subtraction 
operations. Employing two-point DHWT for the 
compression of neural signals in a multi-channel system, 
DHWT coefficients for the ith channel are calculated as: 

஺,௜ሺ݉ሻܥ ൌ ௜ܵሺ2݉ሻ ൅ ௜ܵሺ2݉ ൅ 1ሻ     (2.a) 
and ܥ஽,௜ሺ݉ሻ ൌ ௜ܵሺ2݉ሻ െ ௜ܵሺ2݉ ൅ 1ሻ      (2.b) 

Fig. 2 shows a neural signal and the associated DHWT 
coefficients. 

According to equations (2.a&b), assuming that neural 
signals are digitized to N bits, DHWT coefficients will be 
(N+1)-bit digital words. As a result, DHWT itself does not 
reduce the amount of data. In order to reduce the amount of 
data being telemetered to the outside, the coefficients are 
truncated from the least significant side. On one hand, this 
introduces some error added to the signal being processed, 
and on the other hand, both circuit complexity and the 
amount of data being telemetered will be considerably 
reduced. It will be shown later that the gain in circuit 
complexity and bit rate is much more significant that the 
penalty paid by the noise added to the signal. 

IV. HARDWARE IMPLEMENTATION 
Block representation for hardware implementation of the 

proposed DHWT-based approach is shown in Fig. 3, 
according to which calculation of coefficients for two-point 
Haar wavelet requires only a buffer, an adder, and a 
subtractor.  

To compare DWT in the case of Haar and symmlet4 basis 
functions, they are both designed in this work to process 
neural signals with 8 bits of resolution. Fig. 4 shows the 

 
Fig. 3: Hardware implementation of the proposed DHWT core for one 
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Fig. 2: Applying DHWT on a neural signal 
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flowchart of the signal processing plan for both cases. 
Neural signal is first processed using the associated basis 
function. As a result, in the symmlet4 case, four pairs of 
coefficients (approximate and detail coefficients) are 
generated for every eight signal samples. For the proposed 
Haar wavelet case, one pair of coefficients is generated for 
every two signal samples. In both cases, only the 5 most 
significant bits (MSB) of CA and only 4 useful bits of CD are 
taken to the coefficient truncation step. This step results in a 
compression rate (CR) of:  ܴܥ ൌ 2 ൈ 85 ൅ 4 ൌ 1.78 

 As the final step to further reduce the amount of data bits 
telemetered off the system, only the coefficients calculated 
within the time intervals where spikes occur are sent to the 
outside. 

V. SIMULATION AND EXPERIMENTAL RESULTS  
To evaluate the performance of the proposed compression 

approach, normalized sample-by-sample error (NSE) is used 
as a measure to quantify how much the neural signal is 
subjected to error (mainly due to coefficient truncation) 
when it goes through the process shown in Fig. 4. NSE is 
indeed a measure to determine how well wave shape of 
spikes is preserved. It is defined for the time window where 
spikes occur as: 

ோெௌ ൌܧܵܰ  ோெௌ݈ܵ݅݃݊ܽ௣ି௣ݎ݋ݎݎܧ

where ErrorRMS is the error added to a certain signal sample 
when passing through the compression process, and Signalp-p 
is the peak-to-peak amplitude of the spike. 

Table I compares the two transforms in terms of the error 
introduced by the transforms, compression rates, and 
hardware implementation details. To have a fair comparison, 
the same neural signal has been applied as the input to both 
designs. As expected, in the “Without Spike Detection” case, 
relative error (Error%) for DHWT is slightly larger than that 
for the Symmlet4 case (by 0.1%). This is mainly because 
Symmlet4 is a more suitable basis function for data 
compression as compared with the simple Haar function. 
The excessive error, however, is so small that can be easily 
neglected. Hardware implementation of the DHWT design, 
on the other hand, shows significant saving in the number of 
transistors (by 83%) and in the occupied silicon area when 
physically laid out in a 0.13-μm standard CMOS process (by 
more than 90%). It should be noted that, in Table 1, details 
of hardware implementation for the Symmlet4 case are 
presented from [5]. In the “With Spike Detection” case with 
almost the same compression rate, relative error for the 
proposed DWHT-based approach is expectedly larger than 
the Symmlet4 case. Again, compared to the Symmlet4-based 
technique, the proposed method exhibits almost the same 
compression rate, slightly larger (but acceptable error), and 
much more compact hardware implementation.    

A 64-channel neural processor/compressor was designed 
based on the data compression approach presented in this 
paper. A preliminary prototype was then implemented and 
tested on an FPGA-based development board. To test the 
processor, prerecorded guinea pig neural signals sampled at  

  
Fig. 5. Neural signal (a) before and (b) after the proposed signal processing
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TABLE I 
SINGLE-CHANNEL DWT COMPRESSION 

 Without Spike 
Detection 

With Spike 
Detection 

Hardware  
(Without Spike Detection)

Error 
% CR Error 

% CR Area 
(mm2) No. of Transistors

Haar 1.57 1.78 2.22 112 0.0037 1348 
Symmlet4 1.47 1.78 1.59 108 0.040* 7931* 
* From [5] 

 

Fig. 4: Flowchart of the DWT processing performed to neural signal 
compression/reduction 
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TABLE II 
SUMMARY OF SPECIFICATIONS AND COMPARISON 
 [4] [5,6] This Work 

Transform WHT Symmlet4 Haar 
No. of Channels 64 32 64 

Signal Resolution (bits) 8 10 8 
Tr. Count N/A 42k* 16.76k 

Technology  0.13μm 0.5μm 0.13μm 
Area 0.185mm2 5.75mm2* 113μmx110μm

Compression Rate 72 62 112 
Error 5% N/A 2.22% 

* Only for a 32-ch. DWT core  
 
20kSample/Sec and digitized with resolution of 8 bits were 
used as input. Fig. 5 exhibits the operation of the designed 
DWHT-based processor in which, the top trace is the input 
neural signal and the bottom trace shows the signal 
reconstructed using the data sent off the processor (after 
passing through the entire process of Fig. 4). 

Table II presents overall specifications of this work along 
with two other related works with different transforms. 

VI. CONCLUSION 
This paper investigates the use of discrete wavelet 

transform with Haar basis function for the compression of 
neural signals. Hardware details for electronic 
implementation of the proposed approach are discussed 
according to which, it is shown that DWHT can perform 
with almost the same signal processing performance as 
Symmlet4, while it is implemented with much simpler and 
more compact digital hardware.   
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