
 

 
Abstract—In this paper, a rule-based automatic sleep staging 

method was proposed. Twelve features, including temporal and 
spectrum analyses of the EEG, EOG, and EMG signals, were 
utilized. Normalization was applied to each feature to reduce the 
effect of individual variability. A hierarchical decision tree, with 
fourteen rules, was constructed for sleep stage classification. 
Finally, a smoothing process considering the temporal contextual 
information was applied for the continuity. The average accuracy 
and kappa coefficient of the proposed method applied to the all 
night polysomnography (PSG) of twenty subjects compared with 
the manual scorings reached 86.5% and 0.78, respectively. This 
method can assist the clinical staff reduce the time required for 
sleep scoring in the future. 

 
Index Terms－Automatic sleep staging, decision tree, PSG. 

I. INTRODUCTION 

uman beings spend approximately one third of their life 
sleeping. Sleep diseases, such as insomnia and obstructive 
sleep apnea, seriously affect patients’ quality of life. 

Without restrictive criteria, the prevalence of insomnia 
symptoms is approximately 33% in the general population [1]. 

Obstructive sleep apnea affects over 2% of adult women 
and 4% of adult men [2]. These sleep issues may cause daytime 
sleepiness, irritability, depression, anxiety or even death. 

For the diagnosis of sleep issues, all night 
polysomnographic (PSG) recordings, including 
electroencephalogram (EEG), electrooculogram (EOG) and 
electromyogram (EMG), are usually taken from the patients 
and the recordings are scored by a well-trained expert 
according to the Rechtschaffen & Kales (R&K) rules presented 
in 1968 [3]. According to the R&K rules, each epoch (i.e., 30 s 
of data) is classified into one of the sleep stages, including 
wakefulness (Wake), non-rapid eye movement (stages 1-4, 
from light to deep sleep) and rapid eye movement (REM). 
Recently, stages 3 and 4 were combined and are now known as 
the slow wave sleep stage (SWS) [4]. 

Because visual sleep scoring is a time consuming and 
subjective process, automatic sleep staging methods, including  
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rule-based methods [5-6], numerical classification methods 
[7-8] and the hybrid system, that take advantage of both 
approaches [9], were developed. In rule-based methods, signal 
information and human knowledge are combined to deduce a 
reasonable sleep state. Rule-based methods required the 
detection of specific patterns, such as K-complexes, sleep 
spindles in EEG and rapid eye movements in EOG. However, it 
may be a time consuming task to construct the system, 
especially with human knowledge. In contrast, numerical 
classification methods do not require a set of rules or any 
human knowledge. Spectral analysis was commonly used for 
feature extraction. However, without human knowledge and 
microstructure pattern recognition, some situations may not be 
taken into consideration, such as the transition between S1 and 
S2. Although hybrid systems take advantages of both methods, 
they are more complicated to implement and the results may 
only show only incremental improvement over the rule-based 
methods. The overall agreement of these methods is in the 
range of 80% to 85%. 

In this paper, a rule-based sleep staging system was 
proposed. The central EEG (C3-A2), the difference between 
two EOG and the chin EMG were analyzed, and 12 features 
were extracted for each 30-s epoch. The features were 
normalized to reduce the individual variability, so that the 
system parameters were subject-independent. A distribution 
distance (DD) measure was proposed to extract the 
representative features for each stage in order to construct the 
decision tree and finally, fourteen rules were constructed. For 
performance evaluation, the proposed method was applied to 
the all night PSG of twenty subjects for sleep staging, and the 
results were compared with the manual scorings of the expert. 
In addition to the accuracy, the kappa coefficient [10] was also 
analyzed to demonstrate the robustness of the proposed 
method. 

 

II. MATERIALS AND METHODS 

A. Subjects and recordings 
All-night polysomnographic sleep recordings were 

obtained from 20 healthy subjects (12 males and 8 females) 
ranging from 19 to 23 years in age (mean = 21.2 ± 1.1). The 
data from three subjects were used to generate the system, and 
data from all 20 subjects were used for testing. The recordings 
included six EEG channels (F3-A2, F4-A1, C3-A2, C4-A1, 
P3-A2, and P4-A1, according to the international 10-20 
standard system), two EOG channels (positioned 1 cm lateral to 
the left and right outer canthi), and a chin EMG channel (Siesta 
802 PSG, Compumedics, Inc.). The sampling rate was 1 KHz 
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with 16-bit resolution. The 20 PSG sleep recordings were 
visually scored by a sleep specialist using the R&K rules with a 
30-s interval (termed the epoch). 

 
B. Feature extraction 

The automatic sleep staging system analyzes the data for 
three channels: the central EEG (C3-A2), the difference of the 
two EOGs, and the chin EMG. After downsampling the signals 
to 256 Hz, the EEG and EOG data were filtered with an 
eighth-order Butterworth band-pass filter with a cutoff 
frequency of 0.5–30 Hz, and the EMG data were filtered with a 
5–100 Hz eighth-order Butterworth band-pass filter. The 
continuous time signals were segmented with every 30-s epoch. 

Before extracting spectral features, the signal was 
segmented into non-overlapping intervals of 2 seconds for a 
512-point fast Fourier transformation (FFT) calculation. The 
spectrums corresponding to the 15 2-s segments were averaged 
to represent the spectrum for a 30-s epoch. Table I lists the 12 
features used in this paper [7-8, 11-12]. 
 

TABLE I 
The features for sleep scoring 

No. Type Feature  Source Label 

1 PS Total power of 0-30 Hz EEG 0-30 E 

2 PS Total power of 0-30 Hz EMG 0-30 M 

3 PR 0-4 Hz/0-30 Hz EEG 0-4 E 

4 PR 8-13 Hz/0-30 Hz EEG 8-13 E 

5 PR 22-30 Hz/0-30 Hz EEG 22-30 E 

6 PR 0-4 Hz/0-30 Hz EOG 0-4 O 

7 SF 
Mean frequency of 0-30 

Hz 
EEG Mean(fre.) E 

8 SF 
Mean frequency of 0-30 

Hz 
EMG Mean(fre.) M

9 DR Alpha ratio EEG Alpha E 

10 DR Spindle ratio EEG Spindle E 

11 DR SWS ratio EEG SWS E 

12 
EMG 
energy 

Mean amplitude EMG Amp M 

* PS(=Power spectrum), PR(=Power ratio), SF(=Spectral frequency), 
DR(=Duration ratio) 

 
After feature extraction, normalization of features was 

employed to reduce the effects of individual variability. For 
each feature, the mean of maximal 10% data was calculated as 
the maximum value of the feature, and the mean of minimal 
10% data was calculated as the minimum value of the feature 
for the subject. This process can prevent extremely high or low 
values from influencing any conclusions. 

 
C. The structure of the decision tree 

The design concept for the developed decision tree for 
sleep stage classification was to separate the 30-s epochs into 
two different clusters for each decision node from top to bottom. 
Each decision node tended to separate two different stages. 

There are a total of 13 decision nodes in the proposed decision 
tree, as shown in Fig. 1.  

 
Fig 1. Diagram of the proposed decision tree. There are fourteen decision rules 
and each epoch was classified as one of five sleep stages, including Wake, S1, 
S2, SWS, and REM. 

 
The stages that were easier to identify were processed at 

the nodes in the upper layers, while the stages that were more 
difficult to distinguish were processed at the nodes in the lower 
layers. According to the R&K rules, Wake and SWS differ the 
most, so they are separated in node 1. S1, S2, and REM are 
more similar, so these stages were classified in the final layer.  

Table II presents the operational details of each decision 
node. The two stages to be separated and the utilized features 
for each node are given. Taking node 1 as an example, two 
features, the alpha band of the EEG and the EEG signal from 
8-13 Hz, were used to separate the Wake and SWS stages. 
According to Fig. 1 and Table II, if the feature vectors of an 
epoch fit the splitting predicate in a decision node, the epoch 
goes in the direction of the left branch; otherwise, the epoch 
follows the right branch. After passing through three or four 
decision nodes, each epoch passes through one of the 14 rules 
of the decision tree. The final result is the stage that the epoch 
belongs to. 

 
TABLE II 

The details of each decision node 

Node No. Separate stages Used features and the predicate 

1 Wake / SWS Alpha E > Th & 8-13 E > Th 

2 Wake / REM Alpha E > Th & 0-30 M > Th 

3 SWS / REM, S1 0-4 E > Th & 22-30 E < Th 

4 S2 / Wake 0-4 E > Th 

5 REM / S2 0-30 E < Th & Spindle E < Th & SWS E < Th

6 SWS / S2 
0-30 E > Th & Spindle E < Th & & SWS E > Th 

& 0-4 O > Th 

7 REM / S2 0-30 E < Th & Spindle E < Th & SWS E < Th

8 S1 / S2 0-4 E < Th & Spindle E < Th 

9 Wake / S1 Mean(fre.) E > Th & Mean(fre.) E > Th 

10 REM / S1 Amp M < Th  

11 S1 / S2 0-4 E < Th & Spindle E < Th 

Features

1

2 3

4 5 7

8 9 10 11

6

12 13

Wake, S1, S2, REM SW , S1, S2, REM

Wake, S1, S2 REM, S1, S2 REM, S1, S2SW , S2

S2, S1 Wake, S1 S2, S1 REM, S1 REM, S1 S2, S1

Wake S1S1 S2 S1 S2 REM S1 S1 S2REM S1

SW S2

(1) (2) (3) (4) (5) (6) (7) (8) (1 ) (1 ) (1 ) (1 )

(9) (1 ) 
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12 REM / S1 Amp M < Th 

13 S1 / S2 0-4 E < Th & Spindle E < Th 

D. Predicate in each decision node 
After the elementary construction of the decision tree, the 

two following steps needed to be completed: (1) selecting the 
proper features for the decision nodes and (2) setting the 
thresholds of the selected features as the splitting predicates. 
For the first step, a distribution distance (DD) measure was 
proposed to select the effective features for each node. At each 
node, assuming the two stages were separated into stages A and 
B, the DD measure was calculated with respect to these two 
stages for each feature. The means and the standard deviations 
(SD) of the analyzed feature corresponding to stages A and B 

were ( A , B ) and (σA, σB), respectively. The distribution 
distance (DD) of the feature with respect to A and B was 
calculated using the following equation: 

 
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











                           else                         0

2 if       
2

1
,

BA
BABADD

BA
BA 
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A feature with a large DD value indicates that the values 
for this feature in stages A and B differ to a larger extent. The 
DD analysis can be used for selecting proper features for each 
node. The results for feature selection for each node by DD 
analysis are shown in Table II.  

For step 2, the threshold for the feature was determined by 
equation shown below. 
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E. Classification 

All 20 subjects were used for testing the system. After the 
same preprocessing procedure as the training data, the 13 
features (Table I) described above were extracted for each 
epoch. The classification process comprises four steps: 1) 
movement epochs detection, 2) staging with the presented 
rule-based decision tree, 3) contextual rule smoothing, and 4) 
movement epochs elimination. 

 
1) Movement epochs detection 

The movement (MT) epochs were detected with the 
following rules: if over 1/3 of the epoch of the absolute EMG 
amplitude was higher than double of Th1, or if the difference 
between the two consecutive epochs was higher than Th2, the 
epoch was defined as MT. Th1 is the mean value of the feature 
Amp M in Wake epochs of the training data, and Th2 is the 
mean value of the Amp M difference between every two 
consecutive epochs of the training data. 

 
2) Staging with the presented rule-based decision tree 

The non-MT epochs were classified using the rule-based 
decision tree, shown in Fig. 1. There were 14 rules in the tree, 
and each epoch was classified as one of five sleep-wake stages, 
including Wake, S1, S2, SWS, and REM. 

 
3) Contextual rule smoothing 

After classifying the sleep stage using the decision tree, a 
smoothing process, considering the temporal contextual 
information, was applied for continuity [4]. These rules refer to 
the relationship between epochs prior to and posterior to the 
current epoch.  

 
4) Movement epochs elimination 

After smoothing, an elimination procedure was used on 
those MT epochs with the AASM scoring methods [4]. The 
final result of staging (hypnogram) was still characterized by 
five stages (Wake, S1, S2, SWS, and REM). 

 

III. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed sleep staging 
method, 20 all-night PSG recordings from 20 subjects were 
used for testing. The performance was evaluated in the 
following aspects: (1) the average performance of the method 
without smoothing (Table III) and  (2) with smoothing (Table 
IV) for all subjects. The performance was evaluated by 
computing the sensitivity (SE) [13] of each sleep stage using 
the proposed method and the average accuracy. Sensitivity 
measures the proportion of actual positives which are correctly 
identified as such. In addition, Cohen’s kappa coefficient [14] 
was also calculated for each subject to assess the robustness of 
our system. Cohen’s kappa coefficient (κ) is a statistical 
measure of inter-rater agreement among two or more raters. It is 
generally thought to be a more robust measure than simple 
percent agreement calculations because κ takes into account 
agreements that occur by chance. 

 
A. Global performance 

Table III and Table IV show the confusion matrices of the 
five-stage epoch classification by the proposed automatic 
staging, with or without smoothing, versus manual scoring. The 
rows and columns are the results staged by the expert and our 
system, respectively. Unknown epochs corresponding to the 
unidentified signals and the movement epochs are not taken 
into account here. The testing dataset for estimation was 
comprised of 20 PSGs with 16,976 30-second epochs. As 
shown in Table III, the overall sensitivity was 83.01% for the 
proposed rule-based method. The sensitivities for all stages, 
except for S1, were higher than 82%. In addition, the 
sensitivities for Wake and SWS were close to 90%. Obviously, 
misclassifications of each stage generally occur between 
adjacent stages. This may be because the sleep process is 
continuous; the adjacent stages are more likely with each other 
than other stages. 

As shown in Table IV, the performance of the rule-based 
method can be further improved by smoothing the results. The 
overall sensitivity between the expert and our system was 
86.58%. The results in S2 and REM were increased by 4.78% 
and 2.61%, respectively, with the use of the smoothing 
technique. The sensitivity of SWS was enhanced to over 90%.  

 
B. Cohen’s kappa performance 

Cohen’s kappa coefficient (κ) is a statistical measure of 
inter-rater agreement among two or more raters. It is generally 
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thought to be a more robust measure than simple percent 
agreement calculations because κ takes into account the 
agreements that occur by chance. The average kappa value was 
κ = 0.79±0.04.It was observed that the average kappa (0.79) of 
our system showed substantial reliability. 

 
TABLE III 

Confusion Table for Comparison between Computer Scoring without 
Smoothing and Visual Scoring for All 20 Subjects 

 
Computer 

Wake S1 S2 SWS REM Total SE %

Expert 

Wake 436 28 17 0 7 488 89.34 

S1 98 192 153 1 183 627 30.62 

S2 318 327 7650 360 597 9252 82.68 

SWS 9 0 317 2695 0 3021 89.21 

REM 51 217 200 0 3120 3588 86.96 

Overall 
     16976 83.01 

* SE = sensitivity 
 

TABLE IV 
Confusion Table for Comparison between Computer Scoring with Smoothing 

and Visual Scoring for All 20 Subjects 

 

Computer 

Wake S1 S2 SWS REM Total SE %

Expert 

Wake 436 27 18 0 7 488 89.34 

S1 98 208 167 1 153 627 33.17 

S2 318 246 8092 189 407 9252 87.46 

SWS 9 0 264 2748 0 3021 90.96 

REM 39 183 152 0 3214 3588 89.57 

Overall 
     16976 86.58 

* SE = sensitivity 

 

IV. DISCUSSION AND CONCLUSION 

In this paper, an automated sleep staging system, based on 
the multi-rule decision tree, was proposed. The main idea of the 
tree structure is to separate the stages with the largest variation 
first and the similar stages last. The distribution distance 
measure was proposed and combined with the R&K criteria to 
construct the tree. The innovative aspect of our method is that it 
combines the advantages of numerical methods and traditional 
rule-based methods, yet eliminates the shortcomings of both 
methods. The overall sensitivity of the proposed method 
applied to the PSGs from 20 subjects reached 86.58%. Our 
method correctly classified the vast majority of epochs. Except 
for S1, the sensitivities of all the stages were higher than 87%. 
In addition, the average Cohen’s kappa κ for all subjects was 
0.79 (S.D. = 0.04) and represented a substantial agreement, as 
described by [14], of our method compared to the scoring of the 
expert. 

Another advantage of our method is that a simple 
threshold was set to separate the stages. Compared to other 
classifiers, such as neural networks [7] or linear discriminator 
analysis [15], the thresholding is less computationally complex. 

In the future, these results for young healthy individuals need to 
be extended to older healthy individuals and patients. This 
method can be applied to clinical practice to work with experts 
to reduce the scoring time. Moreover, we will combine this 
algorithm with hardware to develop a portable 
polysomnography system for home healthcare. 
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