
Noise Detection in Heart Sound Recordings

Mohammad K. Zia,Benjamin Griffel, Vladimir Fridman, Cesare Saponieri, and John L. Semmlow

Abstract— Coronary artery disease (CAD) is the leading
cause of death in the United States. Although progression of
CAD can be controlled using drugs and diet, it is usually
detected in advanced stages when invasive treatment is required.
Current methods to detect CAD are invasive and/or costly,
hence not suitable as a regular screening tool to detect CAD
in early stages. Currently, we are developing a noninvasive
and cost-effective system to detect CAD using the acoustic
approach. This method identifies sounds generated by turbulent
flow through partially narrowed coronary arteries to detect
CAD. The limiting factor of this method is sensitivity to noises
commonly encountered in the clinical setting. Because the CAD
sounds are faint, these noises can easily obscure the CAD sounds
and make detection impossible. In this paper, we propose a
method to detect and eliminate noise encountered in the clinical
setting using a reference channel. We show that our method is
effective in detecting noise, which is essential to the success of
the acoustic approach.

I. INTRODUCTION

Coronary artery disease (CAD) is the leading cause of
death in the United States. It causes one in every six deaths
and the associated cost burden exceeds $177 billion [1].
CAD results when the coronary arteries, which supply blood
to the heart tissues, narrow due to plaque deposition. This
narrowing restricts blood flow and hence limits transportation
of vital oxygen and nutrients to heart tissues, which can lead
to a heart attack. Although methods exists to detect CAD,
they are invasive and/or costly, which limits their use as a
regular screening tool to detect CAD in early stages, when its
progression can be controlled using drugs and diet. Because
CAD often goes undetected and untreated, it the leading
cause of death in the United States. A noninvasive and cost-
effective screening tool that can detect CAD in early stages
would greatly reduce the number of deaths and the associated
cost burden.

In 1983, Semmlow et al. first proposed the acoustic
approach to detect CAD, which is the most promising,
noninvasive and cost-effective method to detect CAD [8].
Based on the analogy of how blood flow through partially
narrowed carotid arteries generates sounds, termed bruits,
Semmlow and colleagues hypothesized that coronary artery
narrowing should also produce sounds. Although reports of
audible CAD sounds are rare [4],[6], there are occasional
reports of diastolic murmurs whose timing closely coincides
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with maximum blood flow through the coronary arteries
during diastole, and these sounds have been attributed to
CAD [7], [5], [2]. Based on these reports, Semmlow and
colleagues argued that CAD sounds are likely present in
most patients, but are too faint to be audible under normal
circumstances.

To detect CAD sounds, Semmlow and colleagues applied
advanced signal enhancement techniques to acoustic mea-
surements from the chest. They observed clear differences
in the frequency distribution of normal and CAD patients,
where the latter had more high frequency energy above 120
Hz [8]. Based on this observation, they concluded that signal
enhancement techniques could be used to detect the faint
CAD sounds, which would allow for noninvasive and cost-
effective detection of CAD. For a review of past work on
CAD detection using the acoustic approach, see the review
article by Semmlow et al [9].

Currently, we are working with an industrial partner,
SonoMedica, Inc. (McLean, Virginia), to develop a device
to detect CAD using the acoustic approach introduced by
Semmlow and colleagues. The limiting factor to the acoustic
approach is sensitivity to clinical noise. Noise in the clinical
setting can obscure the faint CAD sounds, making CAD
detection difficult. There are two sources of noise in the
clinical setting: external and internal. External noise includes
talking in nearby rooms, intercom activity, machine and
ventilation noise and door slams. Internal noise is primarily
from stomach growls. In their original study, Semmlow and
colleagues acquired their data in a soundproof booth. Such
a requirement is impractical and would raise the cost to
develop a device to detect CAD using the acoustic approach.
Other researchers manually edit their data for noise. This is
also impractical and imposes an operator bias. Therefore, for
the successful detection of CAD sounds, it is essential to au-
tomatically detect and eliminate noise before any CAD signal
detection efforts. In this paper, we propose an algorithm that
uses the signal from a reference microphone to detect noise,
verify that this noise is also present in the active channel as
some stomach growls are low-level and do not corrupt the
heart sound recordings, and eliminate the corrupting noise.

II. DESCRIPTION OF DATA ACQUISITION

Since we expect noise to be the limiting factor in detection
of CAD using the acoustic approach, we use a reference
microphone placed on the stomach to capture both external
and internal noise. We also acquire heart sound data from
microphones placed on the chest. Recordings are taken using
a 4-channel data acquisition system developed by SonoMed-
ica, Inc.. Channel one and two record heart sounds from
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Fig. 1. Steps for detecting noise using signal from the reference channel.

the chest. Channel three records the reference microphone
for noise. Channel four records the electrocardiogram. Data
were sampled at 22099 Hz using 16 bits. Data were acquired
under the Institutional Review Board (IRB) approval of the
University of Medicine and Dentistry of New Jersey and
with the consent of the patients. Recordings were made in
cardiology clinics under the direction of two of our clinical
co-authors. From our database, we selected a noisy record
to demonstrate the effectiveness of our method.

III. METHOD

For each record we have active channels (channel one
and two) that contain heart sounds and a reference channel
(channel three) that captures external and internal noise. Our
objective is to detect noise activity in the reference channel
and verify that it is also present in the active channels;
some stomach growls are faint, so they do not corrupt the
active channels and need not be eliminated. To detect noise,
we perform a series of steps. A) We begin by applying a
high-pass filter to the signal from the reference channel. B)
We enhance the reference signal using spectral subtraction.
C) We segment the enhanced signal into non-overlapping
frames. D) We identify noisy frames using an eigenvalue-
based method. E) We use an adaptive filter to match the
frequency response of the active and reference microphone.
F) We verify that frames identified as noisy in the reference
channel have similar noise activity in the active channels.
See Fig. 1 for a summary of the method.

A. Bandpass Filter

From previous work, we know that CAD sounds are above
120 Hz. Therefore, we first apply a fifth-order Butterworth
high pass filter with a cutoff frequency of 90 Hz to focus
on detecting noise above 120 Hz. Also, although we pur-
posefully place the reference channel on the right side of
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Fig. 2. Steps of spectral subtraction.

the stomach to reduce possible interference from loud heart
sounds, applying a high-pass filter further ensures that these
sounds do not trigger false noise detection.

B. Spectral Subtraction

We used Berouti’s [3] method for spectral subtraction,
which is the simplest method for narrowband signal enhance-
ment and broadband signal attenuation. Assuming the clean
signal is corrupted by noise that is additive and uncorrelated,
we can obtain an estimate of the clean signal by subtracting
an estimate of the noise spectrum from the spectrum of the
noisy signal. The preserved phase of the noisy signal is then
combined with the estimate of the clean signal spectrum to
re-synthesize the enhanced signal.

Spectral subtraction consists of several steps, see Fig. 2.
a) First, we segment a signal into overlapping frames. b) We
calculate the fast Fourier transform (FFT) of each frame.
c) We separate the magnitude and phase spectrum of each
frame. d)We subtract an estimate of the noise magnitude
spectrum from the noisy signal magnitude spectrum. Sub-
traction is performed using Eq. 1,

X̂(ω) = max([|X(ω)| − η|N̂(ω)|], γ|N̂(ω)|), (1)

where X̂(ω) is the estimate of the magnitude spectrum of
the enhanced signal, X(ω) is the magnitude spectrum of
the noisy signal, and N̂(ω) is an estimate of the magnitude
spectrum of noise. The η parameter is the over-subtraction
parameter which controls how much of the noise is sub-
tracted from the noisy signal. The γ parameter ensures that
negative values resulting from over-subtraction are corrected
by imposing a baseline spectral floor. These two parameters
control the trade-off between broadband signal attenuation
and distortion introduced by spectral subtraction. e) We
combine the enhanced signal spectrum with the phase of
the original noisy signal. f) We calculate the inverse Fourier
transform (IFFT) of each frame. g) Finally, we re-synthesize
the signal in the time domain using overlap-add method.

For estimating the noise spectrum used in step d, we
employed the method proposed by Stahl et al. [10]. Based
on their observation that noise is usually contained in the
top 0.8-0.9 to 1.0 quantile of a given frequency band, we
can estimate the noise spectrum N̂(ω) from the noisy signal
spectrum X(ω, t) by first sorting the magnitudes X(ω) in
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each frequency band ω in ascending order. Then, we define
the q-quantile noise estimation as

N̂(ω) = X(ω, t[qT ]). (2)

That is, we estimate the magnitude of the noise spectrum
N(ω) as the magnitude of each frequency band ω at the q-
th quantile. For example, at q = 0.5, the median, we are
assuming that all the frequency bands contain noise at least
half the time of the duration of the whole signal. For spectral
subtraction, we segmented the frames into 80 ms length with
20 ms using hamming window. We used 1024 point FFT and
used q = 0.45 for estimating noise.

C. Segment Enhanced Signal

We segment the enhanced signal into 100 ms non-
overlapping frames using a rectangular window. These
frames are then checked for the presence of noise in sub-
sequents steps.

D. Identification of Noisy Frames

We identify noisy frames using an eigenvalue-based
method that exploits the difference in the number of signifi-
cant eigenvalues of noisy and noise-free frames. To calculate
the eigenvalues, we construct a trajectory matrix of each
frame. A trajectory matrix has lagged vectors of the enhanced
signal as its column. We used a lag of 100 to construct
the trajectory matrix. We apply singular value decomposition
(SVD) on the trajectory matrix and extract the eigenvalues.
Next, we determine the number of significant eigenvalues
in each frame. Significant eigenvalues are those that account
for 99% of the total eigenvalues. Afterward, we calculate the
variance in each frame and determine the 10 frames with the
least variance. The eigenvalue distribution of these frames
are representative of noise-free frames. Then, we determine
the mean and standard deviation (STD) of the significant
eigenvalues of the 10 frames with the least variance. Finally,
we identify noisy frames to be those whose number of
significant eigenvalues is less than the mean minus three
STD’s of the significant eigenvalues in the 10 frames with
the lowest variance.

E. Adaptive Filter to Match Microphone Frequency Re-
sponse

We have observed that the frequency response of the
microphones to the same signal is not the same between
the active and reference channel. This imposes a problem
because we cannot directly do cross-correlation to verify that
the signal detected in the reference channel is also present
in the active channels. To resolve this problem, we apply an
adaptive filter to match the frequency response of the two
microphones. We use the least mean square adaptive (LMS)
filter. To select the optimum filter length and adaptation
coefficient, we optimized the filter length and adaptation
coefficient to give the best cross-correlation between the
active and reference channel. The inputs into the LMS filter
were the original high-passed signals from step A instead of
the enhanced signals from step B.

F. Verify Presence of Signal in Active Channel

In our last step, we verify the presence of the signal in
the reference channel by doing a simple cross-correlation.
Only very high values, more than 0.95, of normalized cross-
correlation imply signal match.

IV. RESULTS

Fig. 3 shows a typical noisy recording. Marked in the
top panel and second from top panel of the figure are the
corresponding stomach sounds in both active and reference
channel, respectively. The bottom two plots in this figure
show details of the noisy segments from the active and
reference channel. We clearly see that the frequency content
is not an exact match. This is verified from Table I which
shows the normalized cross-correlation to be 0.58 before
adaptive filtering. After adaptive filtering the correlation
increases to 0.99.

Fig. 4 shows the short-term variance before (top panel) and
after (lower panel) spectral subtraction of the reference signal
shown in Fig. 3. Also shown in lower panel of Fig. 4 are the
frames that were identified as noisy using the eigenvalue-
based method. Before spectral subtraction, the noise-free
periods are not distinguishable from noisy periods based
short-term variance. After spectral subtraction, variance of
noise-free periods are noticeably smaller. This change in
variance is reflected in the distribution of the eigenvalues
and we exploit this to identify noisy frames.
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Fig. 3. An example noisy record. Top panel: Active channel with a
noisy period marked. Second panel from top: Reference channel with a
noisy period marked. Bottom left panel: An enlargement of the active
channel noise period. Bottom right panel: An enlargement of the reference
channel noise period. Since the marked noise period does not have the same
frequency response in the active and reference channel, we cannot do direct
cross-correlation to match the noisy period. We must first apply adaptive
filter to match the frequency response of the two channels before applying
cross-correlation to verify whether the detected noise in the reference
channel is also present in the active channel.
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Fig. 4. Short-term variance (STV) of the reference signal shown in Fig. 3
second panel from top. Top panel: STV before spectral subtraction. Lower
panel: STV after spectral subtraction. Spectral subtraction accentuates the
difference between the STV of noisy and noise-free frames. This is reflected
in the eigenvalue distribution of the frames and we exploit this difference
to identify noisy frames, marked in ‘x’.

TABLE I
CHANGE IN NORMALIZED CROSS-CORRELATION OF NOISE AFTER

APPLYING ADAPTIVE FILTER TO THE MATCH THE FREQUENCY RESPONSE

OF THE ACTIVE AND REFERENCE CHANNEL. CROSS-CORRELATION IS

HIGH FOR NOISE THAT IS DETECTED IN THE REFERENCE CHANNEL AND

IS ALSO PRESENT IN THE ACTIVE CHANNEL.

Before LMS 0.58
After LMS 0.99

V. DISCUSSION

Application of spectral subtraction is important because it
enhances the noise commonly encountered in the clinical
setting. Many times this noise has comparable amplitude
to the broadband noise in the room. By applying spectral
subtraction, we enhance the narrowband signal typical of
noise in the clinical setting relative to the broadband noise
in the room. This narrowband enhancement accentuates the
difference in short-term variance of noisy and noise-free
frames, compare Fig. 4 top panel and second from top panel,
which makes subsequent detection of noisy frames using
eigenvalues easier.

After spectral subtraction, noisy frames require relatively
fewer number of eigenvalues to represent most of the vari-
ance compared to noise-free frames. This makes intuitive
sense because a narrowband signal, characteristic of clinical
noise, can be succinctly captured using fewer eigenvalues
while broadband signal, characteristic of noise-free frames,
require more eigenvalues to represent the signal. We exploit
this difference to identify noisy frames. This method for
noise detection is robust since it does not require explicit
thresholding of the STV to identify noisy frames and is
indifferent to gain setting, which can vary greatly in the
clinical setting.

Finally, using adaptive filtering to match the frequency
response of the active and reference channel was an essential
step. Without this step, there would be no way to verify that
noise that is detected in the reference channel is also in the
active channel. This is required primarily for internal noise
because not all stomach growls corrupt the heart sounds.
Also, for noise detected in the reference channel that is not
present in the active channel, the cross-correlation is low
even after applying adaptive filter. We only accept noisy
frames that have cross-correlation greater than 0.95 after
matching the frequency response of the active and reference
channel.

VI. CONCLUSION

In this paper, we have proposed a method to detect noise
in the clinical setting that can corrupt heart sound recordings.
This method can verify the presence of ambient and internal
noise in the active channel using a reference channel. We
anticipate that such a noise detection and elimination method
will be key to the success of the acoustic approach to CAD
detection.
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