
 Abstract—A Wearable Mobility Monitoring System 
(WMMS) can be a useful tool for rehabilitation decision-
making. This paper presents preliminary design and 
evaluation of a WMMS proof-of-concept system. 
Software was developed for the BlackBerry 9550, using 
the integrated three axes accelerometer, GPS, video 
camera, and timer to identify mobility changes-of-state 
(CoS) between static activities, walking-related activities, 
taking an elevator, bathroom activities, working in the 
kitchen, and meal preparation (five able-bodied 
subjects). This pilot project provides insight into new 
algorithms and features that recognize CoS and activities 
in real-time. Following features extraction from the 
sensor data, two decision trees were used to distinguish 
the CoS and activities. Real-time CoS identification 
triggered BlackBerry video recording for improved 
mobility context analysis during post-processing.  

I. INTRODUCTION 
 martphone platforms provide an ideal interface for     
mobility assessment in the community (home, school, 

shopping, etc.). A previous project showed that 
synchronized sensors in a “Smart-holster”, combined with 
BlackBerry GPS and pictures, were useful as a WMMS [4]. 
New BlackBerry devices that integrate an accelerometer and 
video camera provide an opportunity for mobility analysis 
using only integrated sensors.  

Other researchers have developed wearable video systems 
with sensors to record GPS, ECG, video clips, and/or 
acceleration [1], [2], [3]. Further, some researchers used cell 
phone platforms to recognize multi-activities by 
accelerometer only [6], [8]. The research in this paper used 
the BlackBerry Storm2 as a WMMS. Previous preliminary 
work confirmed that the BlackBerry WMMS, using 
acceleration and pictures, could identify walking 
movements, standing, sitting, and lying down [5].  

This study evaluated the sensitivity and specificity of the 
new BlackBerry WMMS, which only used internal sensors 
and cell phone video, for identifying mobility activities for 
able-bodied individuals.  

II. METHODS 

A. System Architecture  
Raw data including accelerations, GPS location, and video 

were collected at the maximum sampling frequency (8 Hz), 

for multimedia recording and 20 Hz without video capture 
(Fig.  1). 

 
Fig.  1.  Smartphone and holster’s location. 

B. Application Development 
An application was developed for BlackBerry OS 5 using 

Eclipse, BlackBerry SDK, and BlackBerry Desktop 
Manager. Testing was performed with a BlackBerry 9550 
Smartphone.  

Accelerations, GPS location, and video were collected at 
the phone’s maximum sampling frequency. The 
accelerations sampling rate was 8 Hz, since multimedia 
capture was active [5]. The GPS Location Listener was 
updated each second to get longitude, latitude, altitude, 
heading, and speed, when in an outdoor environment. 
System output included time, raw sensor data, activity 
features, and digital video. 

After saving the sensor data to a 16 Gb SD card, one-
second data windows were extracted and processed to detect 
CoS.  

As shown in Fig.  2, features were identified from the 
accelerations. The features that were sensitive to changes in 
mobility status included acceleration Y, standard deviation 
(STD) (eq. 1) in X to Z accelerations, range of Y (Range-Y) 
(eq. 2), sum of ranges (SR) (eq. 3), Signal Magnitude Area 
(SMA) of sum of ranges (eq. 4), difference of range 
(DiffSR) (eq. 5), range of X and Z (Rxz) (eq. 6). These 
features were entered into a decision tree (Fig.  3) to 
determine if a CoS occurred. Single or double thresholds, 
with threshold values modifiable in the setup menu, were 
used to identify CoS. Status values were also calculated for 
each feature. These status values were imported into a 
second decision tree for activity classification (Fig. 4).  

When a change was recognized, the video API was started 
to record a three second video clip.  

 CHANGE-OF-STATE DETERMINATION TO RECOGNIZE 
MOBILITY ACTIVITIES USING A BLACKBERRY SMARTPHONE 

Hui Hsien Wua, Edward D. Lemairea,b, Natalie Baddoura 
aMechanical Engineering, University of Ottawa; 

bInstitute for Rehabilitation Research and Development, The Ottawa Hospital Rehabilitation Centre 

S 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 5252

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



2

1

1 ( )
N

i
i

STD Y y m
N =

− = −∑  

( )Range Y MaxY MinY− = −  
(SR Range X Range Y Ran= − + − +

1

N

i
i

SMA SR SR
=

− =∑  

( 2 1)DiffSR SR SR= −  
( )Rxz Range X Range Z= − + −  

           

m = mean Y-acceleration, yi= individual ac
N = data window size, SR2 = current sum 
previous sum of ranges, RX = range X, RZ =
 

Fig.  2.  WMMS algorith
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Data were imported from the SD card into
for statistical analysis. 

III. RESULTS 
Sum of ranges was more sensitive than

distinguishing mobility states (Fig.  5).  
 

Fig.  5.  Sum of ranges to distinguish wa
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TABLE 

SENSITIVITY OF COS IDE

Changes-of-State T

Stand ↔ Walk 6

Walk ↔ Lie 3

Walk ↔ Elevator 5

Sit ↔ Walk 2

Walk ↔ Stairs  4

Walk ↔ Ramp 2

Toast bread → Walk 1

Prepare a meal → Walk 1

Dry hands → Walk 1

Wash dishes → Walk  1

Walk → Brush teeth 1

Dishes → Move a kettle 1

Walk → Prepare a meal 1

Move kettle → Toast bread 8

Walk → Wash dishes 7

Walk → Move dishes 6

Wash hands → Dry hands 4

Brush teeth → Comb hair 2

Comb hair → Wash hands 2
SE = sensitivity, TP = true positive, 
 

TABLE II 
SPECIFICITY OF COS IDE

Changes-of-State FP 

Lie 0 
Sit 1 
Dry hands 1 
Move dishes 2 

lerometer data, 
, lying, and taking an 
and 100% (TABLE I). 
and ramp, has 60 to 83% 
S between walking and 
th, etc.) were between 40 
or CoS involving a 
nts (TABLE I) because 
ween these activities.  
s less than 12% for all 
porting less that 5% false 
ositive in CoS 

ases (12%) (TABLE II). 

I 
ENTIFICATION 
TP FN SE 

67 0 100.00% 

30 0 100.00% 

57 1 98.28% 

29 1 96.67% 

44 16 73.33% 

20 10 66.67% 

4 1 93.33% 

4 1 93.33% 

3 2 86.67% 

3 2 86.67% 

2 3 80.00% 

1 4 73.33% 

1 4 73.33% 

8 7 53.33% 

7 8 46.67% 

6 9 40.00% 

4 11 26.67% 

2 13 13.33% 

2 13 13.33% 
FN = false negative.  

 
ENTIFICATION 

TN SP 

266 100.00% 
238 99.58% 
76 98.70% 
60 96.77% 
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Take an elevator 27 576 95.52% 
Comb hair 7 140 95.24% 
Toast bread 5 91 94.79% 
Wash dishes 8 164 95.35% 
Wash hands 6 98 94.23% 
Ramp 8 115 93.50% 
Brush teeth 13 145 91.77% 
Prepare a meal 23 200 89.69% 
Stairs  34 319 90.37% 
Walk 324 2376 88.00% 
Move a kettle 12 90 88.24% 

SP = specificity, FP = false positive, TN = true negative.  
 

Better activities classification results were achieved when 
using both acceleration features and video clips, as 
compared to using the accelerometer only (TABLE III), with 
the exception of sitting. Acceleration-only had 4% greater 
sensitivity than acceleration-and-video for sitting because 
one CoS was missed, which resulted in no associated video 
data.  

TABLE III 
COMPARISON OF ACTIVITY CLASSIFICATION IN 

ACCELEROMETER ONLY AND ACCELEROMETER WITH VIDEO 
CLIPS RESULTS 

Activity 
Acc. Only Acc. + Video 

SE(%) SP %) SE(%) SP(%) 
Lie 96 100 100 100 
Elevator 2 100 100 100 
Stand 98 99 100 100 
Walk 95 92 96 93 
Dining activity 0 100 94 100 
Sit 96 99 92 100 
Stairs  45 73 86 99 
Bathroom act. 0 100 84 100 
Kitchen activity 0 100 70 100 
Ramp 22 98 50 100 
Move a kettle 0 100 37 100 
Wash dishes 0 100 32 100 
Toast bread 0 100 31 100 
Prepare a meal 0 100 21 100 
Dry hands 0 100 15 100 
Move dishes 0 100 7 100 
Wash hands 0 100 5 100 
Brush teeth 0 100 0 100 
Comb hair 0 100 0 100 

Acc. = acceleration 

IV. CONCLUSION 
The relatively low accelerometer sampling rate with 

BlackBerry OS 5 is a challenge for WMMS activities 
classification. At less than 10 Hz, fewer accelerometer signal 
processing options are available and the loss of 
accelerometer data during video recording limits the ability 
to detect CoS within the video recording period. However, 
by combining and weighting the range, sum, and covariance 
statistics, good activities classification was possible for 
standing, sitting, lying, preparing a meal, and brushing teeth. 
Walking, climbing stairs, and riding an elevator had high 
sensitivity, but the specificity of CoS identification and 
activities classification could be improved by adding 
additional sensors or increasing the accelerometer sampling 
rate. The classification of other small movement activities 
requires further research to increase sensitivity and 
specificity. Higher accelerometer sampling frequencies 
(above 20Hz, and ideally above 50 Hz) could help reduce 
walking false positives and help to classify walking–related 
activities correctly (level ground, inclines, stairs, etc.). 
Further research on calibration methods to set appropriate 
thresholds for each individual could also help decrease false 
positives. 
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