
  

 

Abstract—sEMG based silent speech recognition systems 
seek to bypass the limitations of acoustic speech recognition by 
measuring and interpreting muscle activity of the facial and 
neck musculature involved in speech production.   However, 
this speech recognition modality introduces unique challenges 
of its own.  This paper describes signal acquisition and 
processing strategies that we have employed to address these 
challenges during our development of a silent speech 
recognition system.  

I. INTRODUCTION 

ECENT work in the field of non-acoustic automatic 
speech recognition (ASR) has been motivated by the 
desire to mitigate two significant weaknesses of 

standard, acoustic ASR:  (1) severe performance degradation 
in the presence of ambient noise and (2) a limited ability to 
maintain privacy/secrecy because of the requirement of 
using audible speech. These non-acoustic ASR studies have 
investigated alternative modalities, such as ultrasound [1] or 
surface electromyography (sEMG) [2-9] that can capture 
sufficient speech information while overcoming the 
aforementioned deficiencies of acoustic ASR systems.  
 sEMG based speech recognition, also known as subvocal 
speech recognition,  operates on signals recorded from a set 
of sEMG sensors that are strategically located on the neck 
and face surface to measure muscle activity associated with 
the phonation, resonation and articulation of speech.    
Because the signals are a direct measurement of the 
articulatory muscle activity there is no need for acoustic 
excitation of the vocal tract, making it possible to recognize 
silent, mouthed speech.   Moreover, because sEMG signals 
are effectively decoupled from acoustic signals, they are 
immune to acoustic noise corruption. 
 These two properties have made sEMG an attractive 
alternative modality for speech recognition and have 
motivated several research efforts.  Chan et al. [3] obtained a 
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93% recognition rate on a vocabulary of 10 digits (zero 
through nine) using 5 sEMG channels on the face and neck 
for two subjects who produced vocalized (normally spoken) 
speech.  Betts and Jorgensen [4] conducted a similar study 
on a single speaker but were able to achieve only a 74% 
recognition rate, albeit on a larger vocabulary of 15 words of 
voiced speech.  Jou et al. [5] further extended the vocabulary 
size to 108 words but at the cost of reduced recognition 
accuracy (68%).  Other studies were able to demonstrate 
improved recognition rates for somewhat smaller vocabulary 
sizes. For example, Lee [6] was able to achieve a mean 87% 
recognition rate on 60 vocalized words for 8 male, Korean 
speakers.  Similarly, we reported recognition rates of 92.1% 
and 86.7% on vocalized and mouthed speech, respectively 
for a group of 9 American English speakers for a 65 word 
vocabulary [2].    More recently, Wand and Schultz have 
pushed sEMG based recognition towards continuous speech 
recognition [7], ultimately achieving a Word Error Rate 
(WER) of 15.66% on a vocabulary of 108 words [8]. 
  Despite the significant advances made in sEMG based 
speech recognition performance, this performance level still 
greatly lags that of standard acoustic based ASR systems, 
Moreover,  even though,  sEMG based speech recognition is 
able to address the two aforementioned shortcomings of 
standard ASR systems, this alternative modality introduces 
challenges of its own.  This paper will explore these 
challenges and some signal processing techniques used to 
address them. 

II. SEMG SENSING CHALLENGES 

A. Sensor Locations 

Many of the target muscles involved in speech production 
are relatively superficial and therefore easily accessible for 
recording, whereas others are relatively deep 
(laryngeal/pharyngeal) or otherwise poorly situated for 
conventional sensor placement (e.g. intrinsic muscles of the 
tongue).  Given that there are practical limitations to the 
number of sEMG recording locations obtainable from the 
body surface above the speech musculature, we sought to 
identify an optimal sensor configuration in preliminary 
experiments prior to collecting our larger data sets.  We 
started by identifying 6 regions across the neck and face 
surface (supralabial, labial, infralabial, submental, 
ventromedial neck, and ventrolateral neck) superficial to 
muscles involved in speech production, and identified one or 
two sensor positions within each region that had been used 
in prior sEMG speech studies [3-5, 9] and/or were above 
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Fig. 1.  sEMG sensor locations.  A) The template for placement of sensors 
5-8 is shown with blue pen marks on the skin at  the inside edge of each 
sensor outline corner.  Template lines extend from the corner of the mouth 
vertically downward, and angled upward to cross the corner of the eye.  
Black pen marks on the neck show sensor electrode bar locations. B) 
Sensors on the submental neck (1-2), ventromedial neck (3-4), supralabial 
face (5-6) and infralabial face (7-8). 

prominent speech muscles.  The resulting 11 “default” 
sensor locations served as reference points for sensor 
position mapping experiments performed in an adult male 
and female participant. 

The mapping strategy involved systematically moving one 
or two (at a time) single-differential bar-type sEMG sensors 
(DE 2.1 by Delsys Inc, Boston, Ma) in 5mm steps across a 
face or neck region during mouthed speech production while 
maintaining the default locations for all other regions.  This 
enabled us to assess the sEMG speech content of each 
mapped position in relation to a complete set of sEMG 
signals, examining several sensor configurations for each 
subject.  We found that the information content did not 
markedly change when sensors were moved along 
predetermined trajectories across the labial region (above the 
orbicularis oris superioris and inferioris), but that there were 
consistent optimal locations in the other zones for our two 
test subjects in reference to their body midline.  In the 
supralabial region, sensor placement at a location likely 
above the zygomaticus minor and levator anguli oris 
provided the best information.  Likewise, in the infralabial 
region, the sensor position above the depressor anguli oris 
and depressor labii inferioris provided the most unique 
information.  In the submental region, sensor positions 
above the anterior digastric and mylohyoid was the best, as 
well as a location 3 cm lateral to that position (above the 
platysma and lateral mylohyoid). 

Along the ventromedial neck, a sensor position falling 
above and slightly lateral to the cricothyroid membrane was 
optimal, as well as a position in the same medial location but 
closer to the chin.  Findings from our sensor position 
mapping experiment enabled us to identify 11 of the most 
appropriate (if not optimal) sensor positions, but did not 
indicate the relative importance of each recording location or 
redundancies in the data they provide. 

B. Sensor Set Reduction 

Minimizing the sensor set reduces the system complexity, 
application effort, body contact, and likelihood that a given 
sensor will lose skin contact.  In a recent study [10] we 
systematically analyzed speech recognition performance 
from all possible subset combinations of our 11-sensor set in 
9 participants, and identified the best combination(s) of 
sensor locations to achieve mouthed word recognition rates 
comparable to our full set of 11 locations. We showed that 
5-8 sensors are sufficient to achieve a recognition rate to 
within a half a percentage point of that obtained from the full 
set, and that there were numerous possible combinations of 
which sensors achieved this high recognition accuracy.  
Moreover, 3 of the 5 sensor locations on the ventral neck 
were clearly dispensable, which helped us define a reduced 
set of 8 sensor locations that we have used for recent 
recordings. 

The 8 sensor locations are depicted in Figure 1.  The 
sensors are a customized version of the Trigno™ wireless 
sensors (Delsys Inc.) measuring 11 x 21 mm with silver bars 
5 mm long spaced 10 mm apart attached to the skin with 

double-stick strips.  The face sensors are placed in relation to 
a template pattern (printed on overhead transparency film) 
that uses the corners of the mouth and eye as a reference 
points.  The two ventral neck sensors are placed with their 
medial edge 5 mm from the midline, with the more inferior 
sensor (#4) above the cricothyroid membrane and the 
superior location (#3) just inferior to the submental surface.  
The submental sensors (#1-2) are centered on the submental 
surface with medial edges 10 and 40 mm lateral to the 
midline.  These 8 sensor locations avoid major surface 
curves and creases for the most part, and have maintained 
good signal fidelity for as long as 12 hours at a time 
(spanning multiple meals and conversations).  

 
 
 
 
 

C. sEMG Signal Processing and Recognition 

An sEMG based ASR system has an overall structure that 
consists of essentially the same two core components as a 
standard acoustic ASR system, i.e. (1) a front end that 
parameterizes the signal(s) of interest so as to reduce the 
amount of data to be processed, and (2) a recognition back 
end consisting of the probabilistic models that ultimately 
generate the proper speech labels based on observations 
made on the input signals.  This paper is concerned with the 
signal acquisition and processing aspects of sEMG based 
ASR, and will therefore focus on front-end parameterization.  
We do note that our sEMG ASR system used a Hidden 
Markov Model back end and refer readers to [2], [10], and 
[12] for further details on this matter. 

 
1) Speech Activity Detection 

Because the sEMG based recognition system often 
operates on mouthed speech, we use the term SAD (Speech 
activity detection), instead of VAD (Voice Activity 
Detection).  Despite a rich body of research that has been 
directed towards acoustic VAD, it remains a challenging 
problem, and sEMG based SAD is in many ways an even 
more difficult problem.   It is difficult to define ground truth 
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for the beginning and ending of speech-related activity for 
sEMG signals, as muscle contractions precede speech 
production by varying amounts of time.  This is even more 
challenging for mouthed speech detection, because without 
an acoustic cue, it is hard to differentiate sEMG signals 
associated with speech activity from those associated with 
non-speech movements.   The problem is further 
complicated by the use of multiple sEMG channels, and 
each channel’s speech activity related behavior can be both 
utterance and speaker dependent.    Our initial SAD 
algorithm used a thresholding technique that operated on 
smoothed sEMG envelopes of 5 channels which we 
empirically determined to activate first when speaking [2].   
This algorithm provided satisfactory performance for small 
vocabulary, isolated word recognition, but a more 
sophisticated statistical approach was needed for continuous 
recognition. Specifically, for each 50 ms window, we 
computed third order statistics (TOS) for each selected 
channel:  

)]1()()1()([ 3  nxnxnxnxETOS   (1) 

, where )(nx  is the sEMG signal sample value at time n after 

DC offset removal, and E[] stands for expectation. The 
channel was labeled as active if the TOS crossed a threshold 
value, which was tuned on training data to balance missed 
detections and false alarms. The start of speech was detected 
if a channel had been active for 5 consecutive frames or at 
least two channels were active at the same time. The 
maximum TOS values for all active channels were recorded 
and updated for each window. An active channel was 
labeled as inactive once its current TOS value fell below 
15% of its maximum TOS value in history. The end of 
speech was marked as the point at which all sEMG channels 
became inactive.   
 The TOS based SAD algorithm proved to be more 
accurate than the original SAD algorithm but its 
performance notably degraded in the presence of 
simultaneous non-speech activity.  We also discovered that 
this SAD algorithm was not well suited to real-time 
implementation.  As such, we developed a third SAD 
algorithm, which incorporates a multi-channel decision logic 
that takes advantage of the fact that speech production 
typically involves multiple muscles at the same time and is 
thus able to ignore noise in any single channel. To balance 
the trade-off between simplicity (desired for real-time 
implementation) and robustness, our current SAD algorithm 
is based on these principles: 1) using a short time windowed 
signal to compute local statistics; 2) online background noise 
and real signal statistics tracking on each channel; and 3) a 
global decision based on the five selected best sEMG 
channels. The SAD algorithm operates on two levels of 
finite state machines, shown in Figures 2 and 3. The first 
level consists of a finite state machine for each channel, 
which determines each channel’s speech state. As shown in 
Figure 2, an active/inactive decision is made on each 
windowed time instance, t, by comparing current statistics 
with minimum background and maximum signal statistics, 

where sosTh and eosTh are threshold parameters for start 
and end of speech decision, respectively.   

 

Fig 2.  Finite state machine for an individual sEMG channel.   

 

Fig 3.  Finite state machine used for overall SAD decision making.   
 

The higher level machine, as shown in Figure 3, combines 
each channel’s states to make the final start of speech (SOS) 
and end of speech (EOS) decision. This new SAD 
continuously adapts to the background signal level and the 
speaker/utterance specific maximum energy level for each 
channel. Our evaluations have shown that it is more accurate 
than the TOS based SAD, especially when sEMG signals 
associated with non-speech activity are present. 

2) Signal Parameterization 
Mel-frequency cepstral coefficients (MFCCs) are the gold 

standard parameterization scheme for acoustic ASR systems, 
likely because they approximate human auditory system 
response to acoustic signals.  However, sEMG signals are 
very different from acoustic speech signals, as they exhibit 
slower changes and less fine structure.  In addition, whereas 
typical acoustic ASR systems operate on a single acoustic 
channel, subvocal ASR systems process several sEMG 
channels simultaneously.  Although some studies have 
successfully used MFCC features for subvocal recognition 
[6],   it is not clear that MFCCs represent the most effective 
parameterization scheme for sEMG signals.  Indeed, a 
number of researchers have reported differing levels of 
success using a variety of features, including wavelets [3], 
wavelet packets [4] and a customized set of time-domain 
features [5,7-9].   Our initial work in this area commenced 
with an investigation into a number of potential 
parameterization schemes, including MFCCs as well as a set 
of features derived to specifically process sEMG signals for 
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the recognition of gross motor movements [11].  Using a 
round-robin technique that compared the recognition 
performance obtained for all possible feature combinations, 
we determined that the combination of MFCCs (and their 
corresponding delta features) and muscle co-activation 
levels (quantified amount of simultaneous firing activity 
between all possible pairs of EMG channels) produced the 
best recognition performance.   This parameterization 
technique was able to produce an average recognition rate of 
86.7% on a 65 isolated word vocabulary for 9 speakers [2].   

We sought to improve recognition performance through 
further modifications of the parameterization algorithm.  
Initially, we implemented cepstral Mean and Variance 
Normalization (MVN), and compared this scheme against 
our original algorithm as well as other parameterization 
schemes, including wavelets and the time domain features 
described in [5].   The results, based on recognition tests 
performed on the 10 digit subset of the vocabulary in [2], 
showed that the MVN-based feature set significantly 
outperformed the other candidate feature sets.  In fact, the 
addition of MVN obviated the co-activation features and 
therefore they were dropped from the processing scheme. 

Subsequent alterations focused on tuning the MFCC 
algorithm to better suit the characteristics of sEMG signals.  
MFCCs are computed using a multi-stage process, and some 
of the stages of the MFCC algorithm, namely the filter bank 
and the non-linear compression stages, are amenable to 
modification, depending on the properties of the signals 
being processed.  Typically, for acoustic speech sampled at 
16 kHz, a 24 channel filter bank and a log compression 
algorithm are used, resulting in 12 cepstral coefficients.  
Compared with acoustic speech signals, the spectral 
information present in sEMG signals is concentrated at 
much lower frequencies, suggesting that the use of a lower 
sampling rate, coupled with a smaller filter bank would be 
more effective.  

Thus, to determine the best parameters to use in the MFCC 
computation algorithm, we conducted a series of recognition 
experiments using features generated by different modified 
MFCC parameterizations.  Specifically, we explored the 
effects of modifying the following parameters:  (1) the upper 
frequency cut off of the filter bank, (2) the lower frequency 
cutoff of the filter bank, (3) the frequency scale transform 
constant, (4) the number of channels in the filter bank, and 
(5) the type of non-linear compression (log compression vs. 
root compression, i.e. x0.1, where x represents the output of 
the Mel-scale filter bank).  We conducted recognition 
experiments on a 113 isolated word vocabulary and found 
that performance improvements could be obtained if the 
number of filter banks was reduced to 15 and if root 
compression was used.   This modified MFCC 
parameterization algorithm was used successfully in the 
recognition of disordered subvocal speech [12]. More 
recently, using this modified MFCC algorithm, we have 
been able to achieve a 96.9% recognition rate on a 
continuous vocabulary of 200 words. 

III. FUTURE DIRECTIONS 

Being a relatively new field, the state of sEMG based ASR 
is far less mature than that of standard, acoustic ASR.  
Acoustic ASR technology has developed to the point where 
it is now found in several different commercial products, 
ranging from mobile handsets to corporate call centers.  
With further development, we see no fundamental reason 
why sEMG ASR cannot similarly appear in numerous 
communication system and device control applications 
However, in order to bring this vision to fruition, this new 
technology must become more robust and more practical in 
terms of both algorithmic performance (particularly in the 
presence of non-speech movements) and hardware that is 
easy to wear, non-obtrusive, and able to function under 
possibly adverse conditions. 

ACKNOWLEDGMENT 

The authors would like to thank Carlo J. De Luca, 
Gianluca De Luca, Don Gilmore, and Serge Roy of Delsys, 
Inc. for their assistance in designing and running the sEMG 
data collection experiments and for their work in developing 
and providing the sEMG sensors and related hardware.  

REFERENCES 
[1] T. Hueber, G. Chollet, B. Denby, M. Stone, “Acquisition of 

ultrasound, video and acoustic speech data for a silent-speech 
interface application,” International Seminar on Speech Production, 
pp. 365-369, Strasbourg, France, 2008.  

[2] G.S. Meltzner, J. Sroka, J.T. Heaton, L.D. Gilmore, G. Colby, S. Roy, 
N. Chen, and C.J. De Luca, “Speech Recognition for Vocalized and 
Subvocal Modes of Production using Surface EMG Signals from the 
Neck and Face,” INTERSPEECH 2008, Australia, 2008. 

[3] A.D.C. Chan, K. Englehart, B. Hudgins, and D.F. Lovely,. 
"Myoelectric Signals to Augment Speech Recognition," Medical and 
Biological Engineering & Computing vol. 39, pp. 500-506, 2001. 

[4] B. Betts and C. Jorgensen, "Small Vocabulary Recognition Using 
Surface Electromyography in an Acoustically Harsh Environment." 
NASA TM-2005-21347, 2005. 

[5] S.C. Jou, L. Maier-Hein, T. Schultz, and A. Waibel,  “Articulatory 
feature classification using surface electromyography,” in Proc. 
ICASSP 2006, pp 606-608. 

[6] Lee, K-S. “EMG-Based Speech Recognition Using Hidden Markov 
Models With Global Control Variables.” IEEE Trans. On Biomed. 
Eng., vol 55, pp. 930-940, 2008.  

[7] T Schultz and M. Wand, “Modeling Coarticulation in EMG-based 
Continuous Speech Recognition,” Speech Comm., vol 52, 2010. 

[8] M. Wand and T. Schultz, “Session-Independent EMG-based Speech 
Recognition,” International Conference on Bio-inspired Systems and 
Signal Processing 2011 

[9] L. Maier-Hein, F. Metze, T. Schultz, and A. Waibel, “Session 
Independent Non-Audible Speech Recognition Using Surface 
Electromyography.”  IEEE Automatic Speech Recognition and 
Understanding Workshop. p.  331-336, 2005 

[10] G. Colby, J.T. Heaton, L.D. Gilmore, J. Sroka,, Y.  Deng, J. Cabrera, 
S. Roy, C.J. De Luca, and G.S.Meltzner, “Sensor Subset Selection for 
Surface Electromyography Based Speech Recognition”, ICASSP 
2009. 2009. 

[11] M.S. Cheng, “Monitoring Functional Activities in Patients With 
Stroke.”  Sc.D. Dissertation. Boston University, Department of 
Biomedical Engineering, 2005. 

[12] Y Deng., R. Patel, J.T. Heaton, C. Colby, L.D. Gilmore, J. Cabrera, 
S.H. Roy, C.J. De Luca and G.S. Meltzner “Disordered Speech 
Recognition Using Acoustic and sEMG Signals.” INTERSPEECH 
2009, United Kingdom, 2009. 

4851


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

