
  

  

Abstract—Myoelectric pattern recognition techniques have 
been developed to infer user’s intention of performing different 
functional movements, which can be used to provide volitional 
control of assisted devices for people with disabilities. The 
pattern recognition based myoelectric control systems have 
rarely been designed for stroke survivors. Aiming at developing 
such a system for stroke rehabilitation, this study assessed the 
myoelectric control information remained in the affected limb 
of stroke survivors using high density surface electromyogram 
(EMG) recording and pattern recognition techniques. The 
experimental results from 3 stroke subjects indicate that high 
accuracies (92.42% ± 5.51%) can be achieved in classification of 
20 different intended movements of the affected limb. This study 
confirms that substantial motor control command can be 
extracted from paretic muscles of stroke survivors, potentially 
facilitating their rehabilitation.   

I. INTRODUCTION 
troke is a leading cause of serious, long-term disability in 
many countries. Approximately 15 million people from 

all over the world suffer from stroke each year among which 
5 million people are permanently disabled [1]. The most 
common disability following stroke is a physically functional 
restriction, such as weakness and hemiparesis [1]-[3], which 
could impact the quality of life for patients after stroke. 
Specifically, upper limb dexterity is likely to be affected 
severely, therefore it is crucial to effectively restore the 
functionality of hand and forearm for stroke survivors, due to 
the importance of the upper limb in daily activities. 

A number of mechatronic devices have been designed as 
assistive tools for stroke rehabilitation [3], [4]. A practical 
way for restoration of upper-limb functionality is by 
providing volitional control of assistive devices to people 
following stroke [2]-[4]. 

In myoelectric control systems, surface electromyographic 
(EMG) signals contain rich information in the form of 
muscular activities, from which the user’s intention can be 
detected for control purpose [5]. For people following stroke, 
the myoelectric control has also been reported in robot-aided 
therapy and can be generally categorized in “on-off” control 
[4] and proportional control [3]. Such applications are usually 
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implemented to map the EMG of a single weak muscle to a 
single degree-of-freedom (DOF) of control that is able to 
trigger the activation of the same muscle.  

Recently, pattern recognition techniques have attracted 
increasing attention in the development of myoelectric 
control systems [5], which operate on the assumption that the 
features extracted from EMG signals at given electrode 
placement reflect the inherent activity patterns of multiple 
muscles [6]. The use of EMG pattern classification provides 
us with great opportunity to identify various movements and 
control more DOFs. 

However, there are still great challenges in extending EMG 
pattern recognition technique to myoelectric control of 
assistive devices for stroke survivors, due to their 
neuromuscular impairments [2]. We hypothesize that the 
intention of stroke survivors to perform various movements 
could be possibly identified through EMG analysis, although 
it is difficult for them to perform exact functional tasks with 
their affected upper limb. In order to assess the feasibility of 
extracting motor control information for building myoelectric 
control systems based on pattern recognition techniques, 
EMG signals were recorded and analyzed from stroke 
patients using a high density  surface electrode arrangement, 
during their performance of  20 different intended arm, hand, 
and finger/thumb movements in the affected side. 

This report is organized in four sessions. The next session 
describes the methods of the multichannel surface EMG 
recording and processing used in this study, followed by a 
description and discussion of the preliminary experimental 
results in Session III. Finally, the conclusion and future work 
are presented in Session IV. 

II. METHOD 

A. EMG Measurement 
High density surface EMG signals consisting of 89 

channels were collected above the upper arm, forearm and 
hand muscles in the affected side of each stroke subject. A 
Refa128 EEG/EMG system (TMS International BV, 
Enschede, Netherlands) was used for the recording.  

Fig. 1 illustrates the placement of the electrodes, using the 
left arm as an example. In order to locate every electrode 
position conveniently, all of the 89 electrodes were arranged 
in several groups. A detailed description of the electrode 
positions is presented in Fig. 1(b). Since both the upper arm 
and the forearm can be approximately considered as 
cylinders, there were 80 electrode positions arranged in a grid 
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formation with 10 round groups labeled with uppercase 
letters from “A” to “J”, and 8 lateral groups labeled with 
lowercase letters from “a” to “h”. The round groups labeled 
from “A” to “D” were placed on the upper arm at a location 
from 37.5% to 75% for every 12.5% of the entire distance 
from the greater tubercle of the humerus to the medial 
epicondyle of the humerus, respectively. Similarly on the 
forearm, the round groups labeled from “E” to “J” were 
placed at a location from 12.5% to 75% for every 12.5% of 
the entire distance from the medial epicondyle of the humerus 
to the styloid process of the ulna, respectively. In each round 
group, 8 electrodes were equally spaced around the 
circumference of the arm, and each of them also belonged to a 
different lateral group, as shown in Fig. 1(c). The electrodes 
in lateral group “a” were placed in a line formation which was 
along the center of the posterior side of the upper arm or 
forearm, whereas the lateral group “e” was along the center of 
the anterior side of the upper arm or forearm. On the hand, the 
remaining 9 electrodes were divided into 3 groups (with 3 for 
each), which were placed to target the first dorsal 
interosseous (FDI), thenar group and hypothenar group 
muscles, as shown in Fig.1(d). The size of each individual 
electrode is 8 mm in diameter while the recording surface is 3 
mm in diameter. After the recording surface was filled with 
conductive gel using a syringe, the electrode was then 
attached to the skin using a double-sided adhesive disc. The 
center to center distance between two consecutive electrodes 
depends on the size of the arm. Generally, the distance 
between two round groups is approximately 10 mm, and the 
distance between two lateral groups is approximately 15 mm. 
The surface EMG signals were sampled at 2 kHz per channel. 
All the 89 channels of surface EMG signals were able to be 
continuously monitored through the entire procedure of the 

experiment.  

B. Experimental Protocol 
Three subjects with chronic stroke, one female and two 

males, participated in this study. The study was approved by 
the Institutional Review Board (IRB) of Northwestern 
University. All the subjects gave their consent forms before 
the experiment.  

Each subject was seated upright on a chair with the elbow 
in flexion of about 90° and allowed to put their forearm on a 
height-adjustable table, to have the upper-limb rest entirely. 
The subject was asked to perform 20 functional movements 
as listed in Table I. During the experiment, a video of each 
movement performed by an intact individual served as the 
demonstration for guiding the stroke subject to perform (or 
intend to perform) each movement, although sometimes it 
was difficult for the stroke subject to smoothly or 
successfully perform a fine task by the affected upper limb. 

The experiment comprised of 20 trials. Each experimental 
trial contained 5 repetitions of one movement. For each 
repetition of a movement, the subject was asked to 
comfortably implement the task with muscle contraction at a 
moderate force, to hold the implementation for 3 seconds and 
then to relax for a rest period of 5-20 seconds between 
repetitions. The subject was allowed to rest for 3-5 minutes 
between trials to avoid muscular and mental fatigue.  

C. Data Preprocessing and Segmentation 
The collected surface EMG signals were first processed 

with a fourth order Butterworth band pass filter (30-500 Hz) 
to remove the movement artifacts and noises. 

For each movement, the recorded EMG data were 
composed of 5 active segments corresponding to 5 repetitions 

88

89

83
82

39

35

27

3

31

7

75
79

 
(a) 

abcdefgh

A

B

C

D

E

F

G

H
I

J

353637383940
434445464748
515253545556
596061626364

Elbow

Wrist
8283

8586

8889

345678
111213141516
192021222324
272829303132

33

41
49

57

1

9

17
25

34

42
50

58

81

84

87

676869707172 6566676869707172 6566
757677787980 7374757677787980 7374

2

10

18
26

Shoulder

0%

12.5%

25.0%

37.5%

50.0%
62.5%

75.0%

100%

37.5%

50.0%

62.5%

75.0%

100%

0%

U
pper  A

rm
Forearm

H
and

 
(b) 

Ulna
Radius

a

b

c

d

e

f

g

h

 
(c) 

87

81
84

82
85

88
89
86
83

 
(d) 

Fig. 1.  The electrode placement for 89-channel EMG signal recordings: (a) Schematic diagram of electrode placement with numbers indicating the index 
of EMG channel. Only the electrode positions on the anterior aspect of upper arm, forearm and hand are visible. (b) Electrode arrangement in a grid 
formation with 10 round groups and 8 lateral line groups. The open circles with channel index number inside represent the surface EMG electrodes. (c) The 
cross section of forearm through round group H in the middle of forearm. (d) The positions of 9 electrodes targeting three hand muscles respectively.  
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of muscle contraction. A data segmentation scheme was used 
to manually determine the onset and offset of the active 
segments for each movement class. Several signal channels 
with clear EMG activities and quiescent baseline in between 
were chosen and then averaged as a single data stream, as 
shown in Fig. 2. Subsequently, the onset and offset times of 
each active segment were identified by setting a threshold in a 
way that the amplitude of the averaged data stream above the 
threshold indicated the active segment. This resulting 
segmentation was simultaneously applied on all the channels 
for the trial.  

For each active segment, 89-channel EMG data were 
further segmented into a series of analysis windows with a 
window length of 256 ms and a window increment of 128ms. 
The following EMG feature extraction and pattern 
classification were then performed on these analysis 
windows. The overlapped windowing scheme was used to 
enhance both utilization of limited data stream and continuity 
of decision output by the classifier.  

D. Feature Extraction 
For each analysis window, a set of features was extracted 

to represent the EMG data for classification of intended 
movements. In this study, a time-domain (TD) feature set 
consisting of four TD statistics of EMG signals was 
computed on each of the 89 EMG channels. The TD feature 
set included mean absolute value (MAV), number of zero 
crossings (ZC), number of slope sign changes (SSC), and 
waveform length (WL) of EMG signal. These features were 
chosen because of their low computational complexity and 
high classification performance [2]. Thus, these TD features 
from all 89 channels were concatenated together to formulate 
a 356-dimensional feature vector for each analysis window.  

E. Classification 
User-specific classification was conducted to train and 

evaluate classifiers using the dataset collected from the same 
subject. There are 5 active segments for each movement. The 
classification of movements was carried out using the 
five-fold cross-validation scheme: the EMG data of 4 active 
segments were assigned as training data, and sequentially the 
EMG data of the other remaining active segment were 
referred to as the testing data.  

In this study, the high-density surface EMG recording 
resulted in 356-dimensional feature vectors for pattern 
classification. It could be problematic to directly feed 
classifiers with such high-order feature vectors due to the 
“curse of dimensionality” [6], which means that high 
dimensional data is difficult to work with because much more 
training data is required to get good estimates for 
classification. Therefore, dimensionality reduction 
techniques needed to be employed for better classification 
performance and computational efficiency, before training 
and testing classifiers. Principle component analysis (PCA) 
and linear discriminant analysis (LDA) are two well-known 
linear dimensionality reduction algorithms which have also 
been designed to improve classification accuracies [7]. We 
utilized both of them in a two-stage PCA+LDA approach. 
The first stage was the use of PCA, which employed an 
orthogonal transformation to convert a set of high 
dimensional feature vectors into a set of uncorrelated lower 
dimensional feature vectors called principal components, 
while preserving as much of the variance in the original 
high-dimensional feature space as possible. The number of 
principal components could be chosen less than or equal to 
the dimension of the original feature space. In this study, forty 
principal components were chosen to form the PCA 
transformation matrix, so that the feature vectors were first 
compressed into 40 dimensions. After that, the LDA was 
applied on the following stage to find an optimal linear 
transformation to a lower dimensional feature spaces by 
maximizing the ratio of between-class scatter against 
within-class scatter, given a set of high dimensional feature 
vectors grouped by classes. LDA approach is able to produce 
feature projections to at most C-1 dimensions, where C is the 
total number of classes (here, C=20). The introduction of 
PCA and LDA algorithms can be found in [7]. The 
transformation matrices of PCA and LDA were calculated 
respectively based on the training dataset, and then were 
applied to both the training and testing dataset. Consequently, 
as the result of PCA+LDA, the dimension of feature vectors 
was significantly reduced through the projection from the 
original 356-dimensional space into the resulting 
19-dimensional feature space.  

Then, the support vector machine (SVM) was used for 

TABLE I 
LIST OF THE FUNCTIONAL MOVEMENTS 

Index Movement Index Movement 

1 Wrist Flexion 2 Wrist Extension 
3 Wrist Supination 4 Wrist Pronation 
5 Elbow Flexion 6 Elbow Extension 
7 Hand Open 8 Hand Close 
9 Thumb Extension 10 Thumb Flexion 
11 Index Finger Flexion 12 Index Finger Extension 
13 Fingers 3-5 Flexion 14 Fingers 3-5 Extension 
15 Fine Pinch 16 Lateral Pinch 
17 Tip Pinch 18 Gun Posture 
19 Ulnar Wrist 20 Ulnar Wrist Up 

250mv 2s

Active segment 1 Active segment 2

Channel 81

Channel 73

Channel 58

Channel 34

Channel 7

Averaged

 
Fig. 2.  Filtered surface EMG signals from randomly chosen channels 
during the movement of hand open with 2 repetitions. Then, the signal of 
three channels: 81, 58 and 34, are chosen to calculate the averaged signal 
stream for data segmentation. 
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movement classification, with its advantages in dealing with 
limited data samples, high dimensional and nonlinear pattern 
recognition. The SVM is a kernel-based approach, which 
finds a linear separating hyperplane with maximal margin in a 
higher dimensional feature space, where the training data are 
mapped using a nonlinear kernel function. In this work, the 
library for SVMs (LIBSVM) developed by Chang et al. [8] 
was used to implement the SVM classifiers, and the radial 
basis function (RBF) kernel, which was generally used and 
recommended by LIBSVM software, was chosen to create 
nonlinear decision boundaries of classifiers.  

III. EXPERIMENTAL RESULTS 
According to the five-fold cross-validation scheme, each 

of the five repetitions of one movement was assigned as 
testing dataset in turn, and the user-specific classifiers were 
trained on the remaining training data of each subject. The 
classification results from all the five-fold testing were 
summarized to generate the confusion matrices for the 
classification of 20 functional movements. Fig. 3 shows the 
three-dimensional bar charts of the confusion matrices of the 
user-specific classification per subject. Generally, the 
subjects’ intention of performing 20 different functional 
movements can be successfully indentified with the overall 
classification accuracies of 92.04%, 87.11% and 98.11% for 
three subjects respectively. The user-specific classifiers were 
able to distinguish functional movements in stroke with the 
mean rates of 92.42% ± 5.51% for all three subjects, despite a 
few movements were partly misclassified into others with 
low classification rates for Subject 1 and 2, whereas almost 
all the functional movements performed by Subject 3 were 
correctly identified with high rates close to 100%.  

Based on the use of high density surface EMG recordings, 
the overall user-specific classification accuracies obtained in 
this study to recognize 20 movement classes were even 
higher than the classification accuracies presented in pilot 
study by Lee et al. [2], which utilized 10-channel differential 
EMG to recognize 6 hand tasks. Thus, the sufficient 
information associated with the movement intent of stroke 
survivors can be captured using high density surface EMG 

measurement. This confirms the rich control information 
remained in the paretic muscles of stroke survivors and 
motivates our potential efforts to develop optimal myoelectric 
control schemes for stroke rehabilitation. 

IV. CONCLUSION AND FUTURE WORK 
This paper presents an initial stage of the work on high 

density surface EMG recording and processing, towards 
improved myoelectric control of assisted devices designed 
for stroke rehabilitation. The preliminary experimental results 
demonstrate the feasibility of applying pattern recognition 
techniques on high density surface EMG to reliably identify 
the movement intent of stroke survivors. Future work will 
concentrate on the development of advanced EMG feature 
extraction and pattern classification algorithms to further 
improve the performance of movement classification. 
Moreover, considering requirement of a real time myoelectric 
control system implementation, we will also examine and 
optimize different strategies of EMG electrode configuration, 
channel reduction, feature selection and compression, and 
other related issues.  
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 (a) Overall accuracy of 92.04% (b) Overall accuracy of 87.11% (c) Overall accuracy of 98.11% 
Fig. 3.  The three-dimensional bar charts of the confusion matrices of the user-specific classification per subject: (a) Subject 1, (b) Subject 2, and (c) Subject 
3. Note that the diagonal elements denote the correct classification rates and the off-diagonal elements represent error rates of misclassification that a 
movement of one class is classified into another class.  
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