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Abstract— Seizure prediction performance is hampered by
high numbers of false predictions. Here we present an approach
to reduce the number of false predictions based on circadian
concepts. Based on eight representative patients we demonstrate
that this approach increases the performance considerably. The
fraction of patients for whom we found a significant seizure
prediction performance was increased from 25% to 38% by
accounting for circadian dependencies.

I. INTRODUCTION

Epilepsy is among the most common chronic diseases
of the central nervous system. Roughly 0.5% - 1% of the
world’s population are effected by epilepsy [1]. Approxi-
mately one third of the epilepsy patients cannot be treated
by common treatment strategies. Surgical resection of the
epileptogenic nervous tissue is an option only for a subgroup
of these patients. Novel options for treating those patients
are urgently needed. A prediction of the time when epileptic
seizures occur would not only allow warnings to the patients,
such that they could avoid potentially endangering situations,
but also enabling closed-loop therapeutic strategies. Short
term intervention techniques could be used including EEG-
controlled local application of anticonvulsant drugs [2], or
closed-loop electrical brain stimulation [3].

During recent years, a number of prediction methods have
been developed [4], [5], [6], [7], [8]. Based on linear and
nonlinear analysis techniques, pre-seizure changes in the
dynamics of intracranial and scalp EEG recordings have been
examined and employed for seizure prediction. Evidence for
the existence of a pre-seizure state has been given in several
studies. So far in studies that involved statistical validation
and correction for in-sample optimization, significant seizure
prediction performances could only be found in a subset of
patients [9], [10].

One of the main challenges is that current seizure predic-
tion studies show high false positive rates. This motivated an
investigation towards potential causes for false predictions.
It was found that commonly used seizure prediction methods
raise a considerable number of false alarms during night
time [11]. Since seizures occurring while the patient is
sleeping could be considered as less dangerous, a missed
seizure during night time can be accepted. In other words,
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the sensitivity of raising alarms during night time can be
reduced. This will eventually avoid false positives. Addition-
ally, allowing more flexibility in the adaptation of thresholds
will also likely result in higher sensitivities. Based on these
hypotheses, we here designed a seizure prediction study
that accounts for night- and day-time. As we base our
study on thresholding of certain feature time series derived
from the analysis techniques, we use different thresholds
for night- and daytime. We emphasize that other techniques
than thresholding have been employed for seizure prediction.
For this new paradigm, the corresponding assessment and
evaluation strategies have been adjusted.

The manuscript is structured as follows. First the database
that is used for this study is described. In Sec. III the methods
are introduced followed by discussing the assessment and
evaluation strategies in Sec. IV. The approach for including
circadian characteristics is presented in Sec. V together with
the explanation of the necessary changes to the evaluation
strategies of Sec. IV. Results will be presented in Sec. VI.
The possibility to use probabilistic forecasting for circadian
seizure prediction approaches will be suggested in Sec. VII.

II. DATABASE

The databased used in this study consists of 8 representa-
tive patients suffering from focal epilepsy (Tab. 1). Seizures
were located in different brain areas which are the hip-
pocampus (H) or neocortex (NC) and were of different types,
i.e. simple partial (SP), complex partial (CP) or secondarily
generalized (SG). Data were recorded during presurgical
monitoring. Electroencephalography (EEG) electrodes, either
depth (D), grid (G) or strip (S), were implanted and used for
recording. The total recording duration was approximately
1400 h. During this period in total 172 seizures occurred. The
outcome after surgery was in 4 out of 8 patients excellent,
Engel classification [12] Ia, while in one patient it was IIb
and in three patients there was so far no outcome, i.e. no
surgery (no). Details can be found in Tab. 1.

III. METHODS

Seizure prediction algorithms and studies all function in
a similar way (Fig. 1). The raw data, i.e. in our case elec-
troencephalography (EEG) data, are processed by a seizure
prediction method (Fig 1a). This is typically an algorithms
originating from the field of linear and nonlinear time series
analysis. Many algorithms have actually been suggested and
tested so far, for a review see [7]. One of the most promising
algorithms investigated in previous seizure prediction studies
is the so-called mean phase coherence. The mean phase
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Patient 1 2 3 4 5 6 7 8

Gender f m f m f m f f
Age 29 11 11 34 37 35 50 63

Localization H NC H H H H,NC NC H
Electrodes d g s,d s,d,g d s,d s,g s,d

Seizure types SP,CP SP,CP SP,CP SP,CP SP,SG,CP SP,SG,CP SP,CP CP
Outcome Ia Ia no Ia Ia no llb no
Seizures 9 54 14 26 7 26 15 21

Recording duration (h) 183.1 141.4 155.0 225.3 260.1 180.0 124.4 118.9

TABLE I
PATIENT CHARACTERISTICS, INCLUDING GENDER, AGE, LOCALIZATION: HIPPOCAMPAL (H), NEOCORTICAL (NC), ELECTRODE TYPES: DEPTH (D),
GRID (G), STRIP (S), SEIZURE TYPES: SIMPLE PARTIAL (SP), COMPLEX PARTIAL (CP), SECONDARILY GENERALIZED (SG), ENGEL OUTCOME AFTER

SURGERY AS WELL AS THE NUMBER OF SEIZURES AND THE RECORDING TIME.
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Fig. 1. Basic functioning of seizure prediction algorithms for interictal and
preictal epochs; interictal is the time interval between seizures, while preictal
is the time span right before a seizure. Raw data, here electroencephalog-
raphy (EEG) data (a), are analyzed by linear and nonlinear time series
analysis techniques leading to features (b) – note the different temporal
resolution. Threshold crossings of the feature are considered to be alarms
of the device and the two time intervals intervention time (IT)and seizure
occurrence period (SOP) start. If there is a seizure in (SOP), the alarm is a
true positive.

coherence is a measure for the interaction between pairs of
signals, in our case pairs of EEG signals.

The output of this algorithm is referred to as a feature.
This feature is used for seizure prediction rather than the raw
EEG data. Whenever the feature crosses a certain threshold
an alarm is raised (Fig. 1b and c). After the alarm, there
is a specific time interval which is the sum of two time
windows. These two time windows are the intervention time
(IT), allowing the patient to prepare for the upcoming seizure
or an automatic intervention to become effective, and the
seizure occurrence period (SOP), limiting the time for which
the seizure is predicted to occur (Fig. 1c). If a seizure
does not start in the time window SOP, the corresponding
alarm has to be considered to be a false alarm. Thus, the
sensitivity, i.e. the fraction of correctly predicted seizure, as
well as the specificity, quantified by the false prediction rate,
are determined by the threshold. So far only one fixed but
optimized threshold was used.

IV. SEIZURE PREDICTION CHARACTERISTICS
AND STATISTICS

To assess the seizure prediction performance we use
the so-called seizure prediction characteristics (SPC). It
quantifies the sensitivity of a seizure prediction algorithm
as a function of three parameters. These three parameters
are, first, the specificity assessed by the false prediction
rate, second, the intervention time (IT), third, the seizure
occurrence period (SOP) (Fig. 1c). The two time windows
IT and SOP depend on the desired intervention, which could
be a warning of the patient or an automatic application of a
drug.

To evaluate whether or not the obtained seizure prediction
performance is above chancel level, statistical evaluation is
inevitable. Various approaches are conceivable, several have
been suggested that utilize Monte-Carlo based approaches,
while others are based on analytical considerations. We here
follow the analytical evaluation technique [13].

For the analytical approach, critical sensitivity values
are derived based on a false prediction rate FPR and the
SOP [14], [10]. An uninformative process is utilized which
raises alarms with fixed and constant probability at any
sampling point. This leads to the probability Ph = FPR · h,
where h is the sampling interval. The probability to randomly
“predict” a seizure correctly, i.e. the probability to trigger at
least one alarm such that the seizure falls in the following
seizure occurrence period SOP, can be approximated by
P ≈ FPR · SOP for FPR · SOP considerably smaller than
one [14].

The random predictor can be corrected for multiple testing
which occurs due to the retrospective optimization of the
prediction method. For d independent optimizations, the
probability to predict at least k of K seizures follows [10]

Pd(k,K, P ) = 1−

1−∑
j≥k

(
K
j

)
P j(1−P )K−j

d

. (1)

The critical sensitivity which is achieved by the random
predictor based on a significance level α is thus given by

σanalytical = argmaxk
{
Pd(k,K, P ) > α

}
/K · 100%. (2)
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Fig. 2. Schematic drawing of different thresholding (dashed line) strategies, (a) constant threshold, (b) arbitrary threshold function, (c) different but
picewise constant thresholds.

If the observed sensitivity of the actual prediction method is
larger than the critical sensitivity of the random predictor, it
can be regarded statistically significant. In the following we
will use d = 1 as the lower critical value and the maximum
d for the upper critical value.

V. CIRCADIAN RHYTHMS

As mentioned in the Introduction it has been observed that
false predictions follow a circadian dependency for several
seizure prediction algorithms [11]. This is of particular
importance when taking into consideration that usually also
more seizures occur during night time. In other words, the
fraction of seizures predicted by pure chance is expected to
be increased during night as there are simply more seizures.
Thus, it is necessary to develop seizure prediction algorithms
that take into account the time of the day. This can be
achieved by adjusting the threshold of raising alarms for
night and daytime separately (Fig. 2).

In Fig. 2a the current approach is depicted. It is based
on one threshold that is optimized independently of day-
and night-time. Figure 2b presents a long term goal where
an arbitrary functional form of the threshold is conceivable.
This is approximated here by constant thresholds that might,
however, be different during day- and night-time (Fig. 2c).
This new flexibility has consequences for the statistical eval-
uation. A straightforward approach to tackle this statistically
is to increase the number of degrees of freedom d by a factor
of two accounting for the two different thresholds.

VI. RESULTS

In Fig. 3 the results for the 8 patients are presented. The
sensitivity is shown as a bar plot for the standard approach of
one threshold (normal – Fig. 2a) and the circadian approach
(circadian – Fig. 2c). The false prediction rate was limited

to 3.6 false predictions per day. The intervention time was
varied between 10 min and 60 min and the seizure occurrence
period to 30 min. These are reasonable parameters for issuing
warnings. The circadian performance is always higher than
the sensitivity of the standard approach. The asterisk denotes
statistical significance. The performance of the standard
approach is significant in 50% of the patients, while it is
significant in 100% of the eight patients for the circadian
approach for the lower critical value. For the more important
upper critical value we still see an increase from 20% to
30%. Thus, not only the (average) sensitivity increases but
also the number of significant cases. We emphasize that both
25% and 38% of the cases are highly significant.

VII. PROBABILISTIC FORECASTING

Using adaptive thresholds is also a step towards proba-
bilistic seizure prediction. In probabilistic seizure prediction
the yes/no decisions about upcoming seizures are replaced by
probabilistic quantifications of the likelihood for a seizure to
come. During night time, the average probability for a seizure
would be decreased compared to day time. The arbitrary
functional form as presented in Fig. 2b, is closest to the
probabilistic concept. The threshold crossing would then be
replaced by the probability that can be identified with the
current value of the threshold. So the threshold changes its
interpretation towards a probability.

The assessment and evaluation for probabilistic seizure
prediction is also already developed and can be used to
quantify the corresponding seizure prediction performance.
This will be investigated in a forthcoming study.

VIII. CONCLUSIONS

A reliable prediction of epileptic seizure would enable
novel option for those patients that cannot be treated by
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Fig. 3. Results of the performance investigation for the 8 patients for standard thresholding (Fig. 2a) (normal) as well as circadian thresholding (Fig. 2c)
(circadian). One asterisk denotes significance to the lower critical value, while two asterisk denotes significance to the upper critical value.

common therapeutic strategies so far. Many published seizure
prediction algorithms are, although statistically significant,
not yet showing a clinically relevant seizure prediction
performance. This is mainly due to the fact that the number
of false positives is rather high. Avoiding false positives for
fixed sensitivities is thus of utmost importance.

In this manuscript we have presented a strategy to avoid
false positive alarms using circadian concepts. We have
not used information whether or not a patient is sleeping
such that an online implementation of this algorithm is
conceivable.

We could obtain a significant seizure prediction perfor-
mance in approximately 40% of the patients. Additionally
the sensitivity could be increased. It is still below a clini-
cally relevant performance but we only used two different
thresholds. Allowing for more different threshold values
up to an arbitrary functional form will eventually increase
the performance further. It might also lead to probabilistic
forecasting concepts in the future.
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