
  

  

Abstract—This paper proposes a conceptual hybrid cognitive 
architecture for cognitive robots to learn behaviors from 
demonstrations in robotic aid situations. Unlike the current 
cognitive architectures, this architecture puts concentration on 
the requirements of the safety, the interaction, and the non-
centralized processing in robotic aid situations. Imitation 
learning technologies for cognitive robots have been integrated 
into this architecture for rapidly transferring the knowledge 
and skills between human teachers and robots.. 

I. INTRODUCTION 
OBOTS are designed to help human beings, as expected 
by researchers and the general public. Currently, a new 

generation of robots, named cognitive robots, is developed 
to interactively help humans to complete certain tasks in 
certain areas, which integrates perception, action, learning, 
decision-making, and communication, is to generate human-
like intelligence and behaviors for robots[1].  

After the birth of humanoid robots, researchers expected 
that these robots can be placed into the human existing 
environment. Schaal[2] proposed that the imitation learning 
could be a possible solution to train humanoid robots to 
learn complex behaviors from human teachers. In the 
imitation learning, behaviors are learned from examples or 
demonstrations, which are provided by human or robot 
teachers. After observing examples, robots can generate 
reasonable and similar solutions to solve similar problems. 

The application of the imitation learning for robots in the 
robotic aid area should have much stricter constraints[3] [4] 
[5]. The reason for using the imitation learning in the robotic 
aid area is that behaviors learned from human beings are 
ensured not harmful to humans[6]. 

Recently, the research on cognitive architectures has 
received broad attentions from robotics research community 
because it provides a kind of methods of using cognitive 
processes. Current cognitive architectures can be divided 
into four types: Reactive, Symbolic, Connectionist and 
Hybrid. A typical reactive architecture is Subsumption [7] 
which directly couples sensory-motor information. For 
symbolic type, some well-known architectures are: ACT-
R[8], SOAR[9], and EPIC[10]. Typical  connectionist type 
architectures include: BICS[11], Darwinism[12], and 
CAP2[13]. Hybrid type includes: RCS[14], JACK[15], and 
ISAC[16]. Billard [17] explained biological evidences of the 
existence of imitation learning in animals and  argued it is 
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reasonable to incorporate imitation learning in cognitive 
architectures. 

The rest of this paper is organized as follows: Section II 
describes the system architecture, and the algorithms and the 
models in this cognitive architecture; Section III proposes a 
typical application of this cognitive architecture in the 
robotic aid area; Section IV discusses the advantage of this 
cognitive architecture and proposes possible problems in the 
future study. Section V summarizes the work in this paper. 

II. SYSTEM ARCHITECTURE DESIGN 
The proposed architecture in this paper is based on the 

former research on ISAC cognitive architecture at Center for 
Intelligent Systems of Vanderbilt University[16].  

A. Meta Management Agent (MMA) 
In the MMA, the components are defined based on the 

motivations of the robots. All the components are designed 
in the Long time Memory (LTM). 
--Behavior Motivation (BM) 

This component stores the predefined goal of the robot, 
which is what this robot is expected to do to help humans, 
e.g. cooking, disabled assisting, and surgery assisting. 
--Behavior Generation Memory (BGM) 

The BGM stores methods of generating behaviors in the 
imitation learning. Several existing behavior generation 
methods, including Dynamic Motion Primitives [18] [19], 
Fuzzy Method [20], Lagrange method [21], Potential Filed 
Method [22], and Roadmap Method [23] were tested in our 
lab, and will be stored in this component. Mathematical 
Models representing behaviors are stored in the BGM. In our 
lab, Locally Weighted Projection Regression (LWPR)[24], 
Gaussian Process (GP)[25], and Linear Global Model 
(LGM)[26] were tested and will be used in this component. 
--Behavior Learning Memory (BLM) 

The BLM stores the evaluations of different methods of 
generating behaviors in different situations. Artificial Neural 
Network (ANN) [27] will be used to simulate the evaluation. 
--Implementation 

Triggered by the DA, the MMA finds suitable methods of 
generating behaviors by obtaining the motivation in the BM, 
searching behavior generation methods in the BGM, and 
obtaining the evaluation results from the BLM, and sends 
this information to Deliberation Agent. 

B. Deliberation Agent (DA) 
In the DA, robots use the evaluations from the BLM to 

determine which methods of generating behaviors should be 
used.  
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Fig.1 Proposed Cognitive Architecture 

--Goal System (GS) 
This component sets the goal in a given task which is 

related to a specific situation. 
--Decision Making System (DMS) 

The DMS receives the method of generating behaviors 
from the BGM in the MMA and sends the method to the 
Planning Agent for generating a behavior sequence. It also 
receives the results of executing the behaviors from the 
Planning Agent and sends to the MMA for evaluation of the 
methods. In an imitation learning task, the DMS receives the 
goal from the GS and evaluates the behavior sequence in the 
required situation using the Internal Rehearsal System. 
--Internal Rehearsal System (IRS) 

The IRS[28] evaluates the current behavior sequence and 
sends the evaluation results to DMS for final decision 
making. In IRS, a Robosim [29] based simulation model will 
be established to simulate the environment and the robot.  
--Implementation 

Given a goal of a task in a specific situation, the DMS 
receives the behavior generation methods from the BGM, 
sends the information to a Behavior Sequence Generator to 
generate a behavior sequence using a cognitive segmentation 
method, and evaluates result using the IRS. Results of 
executing the behaviors are sent from the Planning Agent to 
the BLM through the DMS for the evaluations. 

C. Planning Agent (PA) 
In the PA, robots collect the sensory information from 

environment and robotic body using the stored behavior 
models to generate required behaviors in the behavior 
sequence. 
--Short Time Memory (STM) 

The STM stores the environmental information. 
--Behavior Sequence Generator (BSG)  

The BSG receives the behavior generation methods from 
the DMS and generates behavior sequences to complete a 
goal in a given task which is related to a specific situation. 
--Behavior Model (BM) 

The BM stores behavior models which are learned 
through imitation learning. These behaviors are recorded 
using some mathematical models received from the BGM.  
--Behavior Generator (BG)  

The BG generates specific behaviors in the behavior 
sequences using learned behavior models and learned 
behavior generation methods received from the DMS. This 
generation is related to the information stored in the WM 
and the STM, and the results are sent to the Reactive Agent. 
--Working Memory (WM) 

The WM stores information which is directly related to 
the current task. 
--Implementation 

The BG receives behavior sequence information from the 
BSG, generates behaviors using received behavior 
generation methods from the DMS, task-Related information 
from the WM, and environmental information from the 
STM, and sends to the Reactive Agent. 

D. Reactive Agent (RA) 
In the RA, predefined reactive behaviors are stored in the 

‘Reactive Response’ component. Robots rapidly execute the 
behaviors in the Reactive Response for simple situations. 
For example, robots can avoid the collision between itself 
and humans rapidly. 
--Executor 

Executor receives the information of behaviors in a 
behavior sequence and executes the behaviors using 
actuators. This is a typical sensory-motor control system. 
--Emergency 

In robotic aid domain, emergency events are significantly 
important. The Emergency collects the information from the 
environment and extremely rapidly affects Reactive 
Response component. 
--Attention-Perception (AP) 

The AP gathers information from the environment using 
stereo video signal[30] and an ANN model will be used to 
extract required information from several kinds of 
environmental information. 
--Reactive Response (RR) 

The RR stores the emergent responses. Receiving 
environmental information from the AP and the Emergency, 
the RR rapidly generates emergent behaviors and sends to 
Executor. A Subsumption [7] based sub-system will be used. 
--Implementation 

The Executor receives the information of the behaviors in 
a behavior sequence and executes the behaviors in a 
temporal order. If a command from the RR is received, the 
Executor executes them first. 

III. A CONCEPTUAL APPLICATION IN ROBOT AID DOMAIN 
Fig.2 displays a robotic aid system developed at 

Vanderbilt University[31], which helps the disabled, patients 
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and children. Currently, our research is to incorporate the 
imitation learning methods in this cognitive architecture to 
train a robot, named ISAC, rapidly learn skills from human 
teachers to help humans safely and interactively. 

 
Fig.2 ISAC at Work (Year 1993)[31] 

ISAC will be trained to help humans eat the food in the 
tray on the table. Therefore robots should learn how to move 
end-effector (a spoon) to the tray, get the food and move it to 
a position near the mouth of a human. 

 
Fig.3 Pneumatic Driven Humanoid Robot: ISAC 

This application is divided into 2 stages: Demonstration 
Learning and Imitation. 

A. Demonstration Learning 

 
Fig.4 Demonstration Learning Flow Diagram 

ISAC will be demonstrated the behavior of aiding human 
to eat the food by manually moving its right arm. 

The demonstration will be learned using the cognitive 
architecture proposed in this paper and the used components 
and information loop are redrawn in Fig.4. 

Demonstrations are sampled using the AP and segmented 

by the BSG using a cognitive segmentation method which is 
obtained from the BGM through the DMS. Segmented 
behaviors are stored in the BM as models for imitation. The 
behavior sequence and the behaviors are sent to the BGM 
for long time storage. The information flow is mainly 
bottom-up. 

B. Imitation 

 
Fig.5 Imitation Flow Diagram 

Given a new task, ISAC will use the AR to detect the 
position of the tray and the mouth of the human. The DMS 
analyzes the current situation and obtains the cognitive 
segmentation method, the behavior models, and the behavior 
generation methods in the BGM. Then a behavior sequence 
will be generated in the BSG to move the spoon to get the 
food and move it to the position near the mouse of the 
human. The behaviors in the behavior sequence will be 
generated in the BG using the behavior models in the BM. 
The WM receives the specific behavior information and sent 
to the RA. The Executor moves the arm of ISAC according 
to the behaviors. The execution results will be sent to the 
BLM in the MMA through the DMS for evaluations. The 
Emergency receives the information in the AR to affect the 
RR, in case of a collision between ISAC and the humans 
happens. The information flow diagram is shown in Fig.6. 
The information flow is mainly top-down. 

IV. DISCUSSION AND FUTURE STUDY 
This cognitive architecture provides a possible solution to 

improve the imitation learning to a more robust and flexible 
behavior generation method. In the future, robots are 
expected to learn complex behaviors in a dynamic 
environment and the analysis of cognitive processes can 
enhance the learning in a reasonable way. In a human-robot 
interactive situation, a robust architecture can help designers 
to improve the safety of the system. The main contribution 
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of this cognitive architecture is that it combines the imitation 
learning and the cognitive architecture.  

The long term goal is to train robots to generate behaviors 
autonomously in a dynamic human existing environment.  

This paper proposes a cognitive architecture and an 
application of this architecture in robotic aid area. The next 
step is to implement this architecture on ISAC robot and 
carry out experiment in a real human existing environment 
to verify its effectiveness.  

V. CONCLUSION 
This paper proposes a cognitive architecture for imitation 

learning in robotic aid research area. The cognitive 
architecture is divided into several agents and algorithms or 
models are given for the components in each agent, and this 
method can be extended to other areas where imitation 
learning can be incorporated. 
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