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Abstract— In this work, we analyze and evaluate different
strategies for comparing Feature Selection (FS) schemes on
High Dimensional (HD) biomedical datasets (e.g. gene and
protein expression studies) with a small sample size (SSS).
Additionally, we define a new feature, Robustness, specifically
for comparing the ability of an FS scheme to be invariant to
changes in its training data. While classifier accuracy has been
the de facto method for evaluating FS schemes, on account
of the curse of dimensionality problem, it might not always
be the appropriate measure for HD/SSS datasets. SSS lends
the dataset a higher probability of containing data that is not
representative of the true distribution of the whole population.
However, an ideal FS scheme must be robust enough to produce
the same results each time there are changes to the training
data. In this study, we employed the robustness performance
measure in conjunction with classifier accuracy (measured via
the K-Nearest Neighbor and Random Forest classifiers) to
quantitatively compare five different FS schemes (T-test, F-test,
Kolmogorov-Smirnov Test, Wilks Lambda Test and Wilcoxon
Rand Sum Test) on 5 HD/SSS gene and protein expression
datasets corresponding to ovarian cancer, lung cancer, bone
lesions, celiac disease, and coronary heart disease. Of the five FS
schemes compared, the Wilcoxon Rand Sum Test was found to
outperform other FS schemes in terms of classification accuracy
and robustness. Our results suggest that both classifier accuracy
and robustness should be considered when deciding on the
appropriate FS scheme for HD/SSS datasets.

I. INTRODUCTION

High dimensional (HD) data streams including protein,

gene-expression, and other molecular assays are being rou-

tinely acquired in the context of disease diagnosis and

prognosis [1]. The objective then is to be able to build inte-

grated classifiers to leverage this high dimensional data to-

wards making diagnostic and/or prognostic decisions. How-

ever, building classifiers based off HD Small Sample Size

(HD/SSS) data is typically difficult on account of the curse

of dimensionality (K >> n where K is the number of

dimensions and n is the sample size) [2]. One recourse to

building classifiers for a HD/SSS dataset (denoted hereafter

by α ∈ R
n×K) is to use a Dimensionality Reduction (DR)

technique such as Principal Component Analysis (PCA) [3]

to reduce α from size n × K to n × K̂ , where K >> K̂.

However, the reduced featured space may contain noisy

features that can affect the classifier’s performance [2].

In such cases, studies have shown that performing Fea-

ture Selection (FS) before PCA can significantly improve

classifier performance [3]. FS consists of selecting the most
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informative features that can best stratify the data based on

its attribute profile into different categories [3]. FS methods

reduce α initially to an intermediate subset F ∈ R
n×k, where

K̂ << k << K , and where F only contains significant,

class discriminating features as identified by a FS method.

After the FS method chooses the most relevant data, PCA

can further transform this data into a reduced subspace of K̂

features which allows for representation of the original data

into far fewer dimensions.

In a dataset with a large sample size and few features,

the effects of outliers will be minimal and the training

data will be representative of the population at large. The

resultant F will have a high probability of containing the

most relevant features [4]. However, in the HD/SSS case,

the values of few outliers can drastically change the set

of extracted features and this new set of potential noisy

features may not adequately reflect or capture class-specific

differences. An ideal FS scheme should be robust enough to

overcome the effects of these outliers and still extract a set of

discriminatory features. This raises two interesting questions:

(1) Which FS method yields the best F ? The evaluation of

FS schemes has been restricted to classification performance.

However, this measure may not be appropriate in the context

of HD/SSS, due to insufficient sampling, making it hard

to establish the best F [5]. Moreover, similar classification

accuracies do not imply that consistently similar sets of F

will be produced by the same FS schemes [6]. This indicates

that several sets of F may show similar classification per-

formance. Thus, classifier accuracy alone is insufficient to

evaluate an FS scheme in the HD/SSS context.

(2) Would this FS method obtain similar results with

a SSS? A SSS makes the data unreliable as an adequate

predictor of the population at large [7]. Therefore, there is a

need to compare various FS schemes and the classification

results they yield on a HD/SSS dataset. However, there have

not been very many experimental studies to compare the

performance of FS schemes, specifically in the context of

biological data which is prone to the HD/SSS problem [8].

To address the problem of selecting consistent feature sets

in the HD/SSS context, we define the robustness of a FS

scheme as its ability to extract similar sets of F independent

of the input training data. Denote FN as the set of k features

extracted in a dataset with a large sample size and FHD/SSS

as the set of k features extracted in the presence of HD/SSS.

Kupinski et al. [4] tries to investigate the probability that

the features in FN appear in FHD/SSS . Canul-Reich et

al. [6] compare the intersection of FHD/SSS produced by

different FS schemes. However, to the best of our knowledge,
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a quantitative measure to evaluate the consistency of FS

schemes has never been proposed.

The goal of our new FS based performance measure, Ro-

bustness (φR), is to quantitatively measure the deterioration

of the performance of a FS scheme for HD/SSS data. A high

φR does not imply that an optimal F , containing the most

informative features of α, was extracted from the dataset. It

only implies that the FS scheme has the ability to consistently

pick the same features in F across different training sets.

Similarly, a high classification accuracy (φA) does not imply

that an optimal FS strategy was used. Clearly both measures,

φA and φR, must be used together to identify an appropriate

FS scheme. In this paper, we establish such a measure to

determine which FS schemes extract the best F in terms of

φR and φA for the HD/SSS case.

In this work, we examine the results of 5 different FS

schemes (t-test, F-test, Kolmogorov-Smirnov Test, Wilks

Lambda Test and Wilcoxon Rand Sum Test) on publicly

available gene and protein expression datasets. After using

these FS methods and PCA to reduce α to size n × K̂, we

calculate classification accuracies, using K-Nearest Neighbor

(KNN) and Random Forest (RF) classifiers, and the Robust-

ness measure for HD/SSS data. Using these two measures,

we attempt to determine the optimal FS scheme when dealing

with HD/SSS gene and protein expression studies.

Our main contributions in this paper are to:

• Establish a novel measure, Robustness (φR), that mea-

sures the ability of an FS scheme to extract similar sets

of features independent of changes to the input training

data for the HD/SSS case.

• Find the optimal FS scheme in the case of a bioin-

formatics application based on Robustness (φR) and

classifier accuracy (φA).

II. ROBUSTNESS FOR EVALUATING AN FS SCHEME

A. Establishing Variance (φN ) of an FS scheme

We define S = {x1, x2, x3...xn} as the set of samples

and ψ : Sn → R
1×k to be a function that extracts the k

most significant features as ranked by a specific FS scheme

based on a subset D ⊂ S. Assume that the cardinality of

|D| = mn and that D can be created by randomly sampling

m% of the n samples in S. This process can be repeated

Q times such that D1, D2, D3...DQ ⊂ S are created. The

resultant set of extracted k features from each Du is Fu =
ψ(Du), where u ∈ {1, 2, ...Q} and ψ may be a FS scheme.

Because each Du will be different, each resultant Fu may

be different. Thus, we define a measure φN associated with

ψ to determine the variance in feature subsets as a function

of Du.

φN =
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⋃

refers to the union of sets. Despite different training

sets of Du, an ideal FS scheme should produce similar sets

of Fu and thus a low φN . Failure to produce similar sets

of Fu would result in a higher φN . φN thus measures the
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Fig. 1. Derivation of Robustness term, φR
avg. φN is first calculated across

a range of m where a lower m will result in a higher number of noisy
features being identified. Next, φR is calculated from φN where a higher
m indicates higher robustness. Finally, φR

avg is calculated as the average
across m.

robustness of an FS scheme to changes in the training data.

We now establish the range of φN in Propostion II.1.

Proposition II.1. For k ∈ {1, 2, ...K}, m ∈ (0, 1], Du ⊂ S,

where u ∈ {1, 2, ...Q}, it follows that k ≤ φN ≤ Qk.

Define a general β where β ∈ {1, 2, ...Q}:

(i) φN =
∣

∣

∣
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B. Extending Variance (φN ), to Robustness (φR)

A high φN for a FS scheme indicates a high tendency to

pick up different features in the sets of D̂1, D̂2, D̂3, ..., D̂Q ⊂
S, where u ∈ {1, 2, ...Q}. Using the range of φN , from

Proposition II.1, a new normalized measure called Robust-

ness (φR), can be derived in the following manner:

φR =
Q

Q− 1

(

1−
φN

Qk

)

(2)

Since, k ≤ φN ≤ Qk, the resultant φR will also be

bounded such that 0 ≤ φR ≤ 1. For a FS scheme, φR = 1
will signify the most robustness and φR = 0 will signify the

least robustness (orthogonal sets of F picked).

A singular value, φRavg , for a FS scheme can be obtained

on a particular dataset by averaging the values of φR over

a range of m, allowing for φR to be employed seamlessly

over different types of datasets. We can define m1,m2 ∈ R

such that 0 < m1 < m2 ≤ 1.

φRavg =
1

(m2 −m1)

∫ m2

m1

φRdm (3)

C. Determination of the most optimal FS scheme

As discussed in Section 1, both φRavg and φA have to be

considered equally when deciding the optimal FS scheme.

Since φRavg and φA measure fundamentally different prop-

erties, a FS scheme that optimizes one measure may not

necessarily also optimize the other measure. Since both

measures are similarly scaled, φA, φRavg ∈ [0, 1], the optimal

normalized score, φSc, can be computed as:

φSc = (φA)ωA(φRavg)
ωR (4)

where ωA ∈ [1,∞), ωR ∈ [1,∞) and (ωA, ωR) ∈
{(1, [1,∞)), ([1,∞), 1)} are variable weights for each mea-

sure adjusted depending on the needs of the application. In

addition, min{ωA, ωR} = 1 so that the measure with the

lower weight is always 1.
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D. Feature Selection (FS) Methods used in this study

We denote W1 and W2 as class 1 and 2, and µ1 and µ2

as the means, σ2
1 and σ2

2 as the variances, and n1 and n2

as the sample sizes of W1 and W2. we further denote σ2

as the total variance of all the samples in both classes, F1

and F2 as the empirical cumulative distribution functions of

W1 and W2, and bi as the rank of the sample xi ∈ W2 with

respect to the rest of the samples. Table I summarizes the 5

FS schemes (t-test, F-test, Kolmogorov-Smirnov Test (KST),

Wilks Lambda Test (WLT), and Wilcoxon Rand Sum Test

(WRST) [9]) used in this study.

TABLE I

THE 5 FS SCHEMES USED IN THIS STUDY AND THE

CORRESPONDING FORMULATIONS.

FS scheme Score

t-test t =
‖µ1 − µ2‖
√

σ2

1

n1

+
σ2

2

n2

F-test F = max{
σ2

1

σ2

2

,
σ2

2

σ2

1

}

KST L = max{F1(x)− F2(x), F2(x)− F1(x)}

WLT Λ =
n1σ

2

1 + n2σ
2

2

(n1 + n2)σ2

WRST U = n1n2 +
n2(n2 + 1)

2
−

n2
∑

i=1

bi

III. EXPERIMENTAL DESIGN AND RESULTS

A. Dataset Description

5 publicly available binary class gene and protein expres-

sion datasets denoted respectively as α1, α2, α3, α4, and

α5, summarized in Table II, for Ovarian Cancer [10], Lung

Cancer [11], Bone Lesions [12], Celiac Disease [13] and

Coronary Heart Disease [14] were used in this study. The

sample size of the data ranged from 132 to 253 patients and

the dimensionality ranged from 12625 to 22125 features.

TABLE II

THE 5 HD/SSS DATASETS USED IN THIS STUDY

Dataset Samples Features Description

α1 Ovarian Cancer 253 15154 162 Tumor,
proteins 91 Normal

α2 Lung Cancer 187 22125 97 Cancer,
genes 90 Control

α3 Bone Lesions 173 12625 137 Lesions,
genes 36 Normal

α4 Celiac Disease 132 18981 110 Celiac,
genes 22 Healthy

α5 Coronary 153 20589 87 Atherosclerotic,
Heart Disease genes 66 Control

B. Experimental Data and Results

The φRavg and φA of the 5 datasets (α1, α2, α3, α4, and

α5) are first calculated using the 5 FS schemes (t-test, F-test,

KST, WLT, and WRST). The φSc values are then computed

using the values of φRavg and φA across the five datasets for

a FS scheme to determine which FS scheme is most optimal.

TABLE III

Experiment 1: φR
avg ACROSS ALL 5 DATASETS USING 5

DIFFERENT FS SCHEMES

Tests α1 α2 α3 α4 α5 mean

T-test 0.978 0.897 0.810 0.738 0.742 0.833± 0.104

F-test 0.973 0.915 0.952 0.730 0.942 0.902± 0.098

KST 0.968 0.870 0.787 0.733 0.705 0.813± 0.107

WLT 0.985 0.904 0.822 0.788 0.754 0.851± 0.093

WRST 0.985 0.925 0.838 0.798 0.782 0.866± 0.087

1) Experiment 1 - Evaluation of FS schemes via Robust-

ness measures φR and φRavg:

Using Q = 100, k = 100, and .2 ≤ m ≤ .99, φRavg and

the mean value of φRavg across the 5 datasets were calculated

for all five FS schemes. In addition, φR (which measures

robustness at each value of m) is also shown for dataset α1.

As m decreases, the data would lose the ability to properly

represent the overall population because of the SSS. Con-

sequently, φR of the FS schemes would deteriorate. This is

confirmed in Figure 2 that as m decreases, φR also decreases.

In Table III, we see the overall φRavg calculated for each

FS scheme on each dataset. Overall, F-test has the highest

φRavg value of all the schemes (mean of φRavg = .902 across

all 5 datasets) and WRST had the best φRavg in 3 of the 5

datasets. The t-test, KST, WLT had lower values with mean

of φRavg = .833, φRavg = .813, and φRavg = .851 across the 5

datasets respectively.

2) Experiment 2 - Evaluation of FS schemes via classifi-

cation accuracies φA:

Subsets of F were extracted with k = 100 as ranked by

the 5 FS schemes. PCA was then used to reduce each dataset

to K̂ = 3. The samples were randomly split using 10-fold

cross validation and classification accuracies were calculated

using classifiers KNN, with k = 1, and RF, with 250 Trees.

The four tests, t-test, KST, WLT, and WRST, all have

a similar φA (with the WRST being marginally higher

than the rest) across both classifiers in Table IV and V.

Only the F-test compares the variance of the distributions

without considering the means. Because it only considers

variance, it seems to underperform the other tests in terms

of classification accuracy. However, it is also important to

note that there is no one FS scheme that consistently yields

the highest classification accuracy across all datasets.

3) Experiment 3 - Determination of the optimal FS scheme

in the presence of HD/SSS:

The means of φRavg and φA across the 5 datasets in

Experiments 1 and 2 were used to determine the φSc values

for all 5 FS schemes. (ωA, ωR) = (1, 1) is used to allocate

equal weight to both measures.

Even though the F-test has the highest φRavg value, it has

a very low φA value across both classifiers. On the other

hand, t-test, KST, WLT, and WRST have similar φA, but

WRST has a much higher φRavg . With (ωA, ωR) = (1, 1),
these results indicate that WRST is the most optimal FS

scheme. Furthermore, WRST ceases to be the most optimal

FS scheme only for ωR > 2.8 for KNN and ωR > 1.8
for RF. At these values, the F-test, which has the highest

φRavg , becomes the most optimal FS scheme. Regardless,

because WRST is the most optimal for most of the domain
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TABLE IV

Experiment 2: KNN φA (%) WITH ± VARIANCE (%) ACROSS ALL 5 DATASETS USING 5 DIFFERENT FS SCHEMES

Tests α1 α2 α3 α4 α5 mean

T-test 92.32±0.33 61.37±1.42 70.83±1.11 80.36±1.29 59.06±1.90 72.99

F-test 78.42±0.61 53.11±1.25 72.44±0.92 70.93±1.18 54.50±1.43 65.88

KST 92.98±0.11 60.53±1.48 70.83±1.04 77.71±1.24 59.75±1.62 72.36

WLT 95.09±0.05 59.74±1.19 71.44±1.27 79.59±0.95 56.50±1.59 72.47

WRST 94.81±0.07 61.11±1.12 70.94±1.26 83.07±0.81 58.94±1.44 73.77

TABLE V

Experiment 2: RF φA (%) WITH ± VARIANCE (%) ACROSS ALL 5 DATASETS USING 5 DIFFERENT FS SCHEMES

Tests α1 α2 α3 α4 α5 mean

T-test 90.10±0.33 64.42±1.01 72.11±0.98 84.50±1.28 57.94±1.56 73.81

F-test 79.58±0.94 52.26±0.98 79.28±0.90 79.53±1.09 54.50±2.04 69.03

KST 90.11±0.15 62.79±1.18 73.89±1.15 81.36±0.81 60.62±1.21 73.75

WLT 90.91±0.22 63.79±1.10 76.67±0.90 83.71±1.09 55.31±1.50 74.08

WRST 91.17±0.52 63.21±1.05 75.33±0.79 82.29±0.99 59.19±1.81 74.24
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Fig. 2. Experiment 1: Comparison of φR accross the 5 FS schemes
with respect to m, the percentage of sample size, for dataset α1

TABLE VI

Experiment 3: VALUE OF φSc
FOR ALL 5 FS SCHEMES WITH THE

TWO CLASSIFIERS KNN AND RF

Tests KNN RF

T-test 0.608 0.615

F-test 0.595 0.623

KST 0.588 0.599

WLT 0.616 0.630

WRST 0.639 0.643

of (ωA, ωR), we may conclude that it obtains the best F that

solves the issue of both HD and the problem of a SSS.

IV. CONCLUDING REMARKS

High Dimensional (HD) datasets combined with a Small

Sample Size (SSS) are common in the field of bioinformatics.

Feature Selection (FS) schemes are a common way to reduce

the dimensionality of biomedical datasets but analysis of the

performance of FS schemes has been limited to classification

accuracy (φA). Such a measure has a high error rate in

the context of HD/SSS data. In this paper, we establish a

new measure, Robustness (φR), to gauge the performance

of an FS scheme specifically in the context of HD/SSS. φR

measures the ability of an FS scheme to extract a consistent

set of features and evaluates the robustness of the scheme

to changes in training data. However, this measure does not

reflect the ability of an FS scheme to extract informative

features from a dataset. Both φR and φA must be used in

conjunction to truly gauge the performance of an FS scheme.

We analyze 5 different FS schemes (t-test, F-test, KST, WLT

and WRST) and compare them using two classifiers (KNN

and RF) and our new measure φR. Of the 5 FS schemes,

WRST seems to be the better FS scheme with a relatively

higher φR and φA compared to other schemes (φSc = .639
and φSc = .643 with KNN and RF respectively, using

(ωA, ωR) = (1, 1)). Finally, we acknowledge that the 5 FS

schemes used in this study are based on different assumptions

about the data, such as the parametric assumptions made by

t-test and F-test. However, our experimental framework did

not incorporate any prior knowledge about the underlying

distributions of the datasets (since we did not want to bias

any of the FS schemes). In future work, we intend to explore

the validity of our conclusions by including additional FS

schemes on a larger number of datasets.
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