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Abstract-Parkinson`s disease (PD) is the most frequent 

neurodegenerative movement disorder. Early diagnosis and 

effective therapy monitoring is an important prerequisite to 

treat patients and reduce health care costs. Objective and non-

invasive assessment strategies are an urgent need in order to 

achieve this goal. 

In this study we apply a mobile, lightweight and easy 

applicable sensor based gait analysis system to measure gait 

patterns in PD and to distinguish mild and severe impairment 

of gait. Examinations of 16 healthy controls, 14 PD patients in 

an early stage, and 13 PD patients in an intermediate stage 

were included. Subjects performed standardized gait tests 

while wearing sport shoes equipped with inertial sensors 

(gyroscopes and accelerometers). Signals were recorded 

wirelessly, features were extracted, and distinct subpopulations 

classified using different classification algorithms. The 

presented system is able to classify patients and controls (for 

early diagnosis) with a sensitivity of 88% and a specificity of 

86%. In addition it is possible to distinguish mild from severe 

gait impairment (for therapy monitoring) with 100% sensitivity 

and 100% specificity. This system may be able to objectively 

classify PD gait patterns providing important and 

complementary information for patients, caregivers and 

therapists. 

I. INTRODUCTION 

HE most frequent neurodegenerative movement disorder 

today is Parkinson disease (PD). While the prevalence is 

12.5 in 100,000 people in the age group of 40-44 years, it 

increases to 2,205 in the age group over 85 years [2]. Due to 

an aging society, increasing industrialization, and 

environmental factors, the number of patients will grow 

rapidly in the forthcoming decades [3]. 

Primary symptoms of PD are bradykinesia (a slowness of 

movements), rigidity (stiffness of muscles during passive 

movement), tremor (abnormal, repetitive contractions of 

agonist and antagonists) and postural instability (an impaired 

balance) [5]. Due to these symptoms characteristic gait 
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impairments occur. Examples are shuffling gait (decreased 

foot roll-over movement), reduced step length, impaired gait 

initiation, and reduced gait speed [6]. 

The Unified Parkinson`s Disease Rating Scale (UPDRS) -

Part III is the most commonly used scale to rate motor 

symptoms in PD [7]. The UPDRS is standardized, but 

remains subjective and depends on the patient`s momentary 

status. Nevertheless, the UPDRS is an internationally 

accepted rating scale to assess efficacy in clinical studies [5, 

8, 9]. Additionally it is widely used in outpatient centers for 

movement disorders. 

Several studies focus on gait symptoms like "freezing of 

gait" in PD. Moore et al. [10] and Baechlin et al. [4] used 

accelerometers attached to the leg, detecting gait changes to 

avoid falls and prevent injuries. Patel et al. published a 

system to monitor motor fluctuations using eight 

accelerometers attached to the upper and lower limbs [11]

including a web-based application to provide information to 

a clinical center [12]. Pansera et al. measured gait changes 

with accelerometers attached to arms, calves, and trunk in a 

small number of PD patients [13]. Automated movement 

analysis of the upper extremity has also been introduced to 

PD patients [8, 14, 15] without assessing gait impairment. 

General bradykinesia was also detected using accelerometer 

based systems [9].  

Systems already presented in the literature have a number 

of disadvantages for objective clinical assessment of PD, 

e.g. they use a complicated sensor setup, are non-mobile or 

do not provide an objective rating of the gait impairment. 

Therefore, the purpose of the presented research is to 

overcome existing disadvantages and to develop a sensor 

based mobile measurement system based on inertial sensors 

for objective assessment of gait disorders in Parkinson`s 

disease. We aim to establish an instrument to objectively 

measure and rate PD gait symptoms, using a mobile, non-

invasive and easy applicable sensor based system. 

II. METHODOLOGY 

A. Sensor platform and setup 

We used inertial sensors (gyroscopes, accelerometers)

integrated in the SHIMMER (Sensing Health with 

Intelligence, Modularity, Mobility, and Experimental 

Reusability) sensor platform (Shimmer Research Ltd., 

Dublin, Ireland). They provided an extensible platform for 

real-time motion sensing [16]. Data were directly 

transmitted via Bluetooth
®

 to a receiver unit [16]. The 
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complete sensor had a small form factor (50 x 25 x 12.5 

mm) and was lightweight (15 g). 

The sensor platform contains a MSP430F1611 

microprocessor running TinyOS and a three axis low-g 

accelerometer (MMA7260Q, Freescale Semiconductors, 

Austin, TX, USA) with an adjustable range of ± 1.5g to 6g 

and a sensitivity of 0.0025g at 4g. The built-in MEMS 

gyroscope was an InvenSense (Sunnyvale, CA, USA) 500 

series, with a range of ± 500 degree/sec and a sensitivity of 

2mV per degree/sec. 

The sensor unit was attached to the lateral heel of a sport 

shoe (Fig. 1). To provide comparable conditions, identical 

shoe models were used for each subject. Data was captured 

synchronously from both feet via Bluetooth
®
 with the 

software BioMOBIUS - Eyes Web (InfoMus Lab, 

University of Genoa, Italy) using an accelerometer range of 

± 4g and a sampling rate of 100 Hz. 

B. Data collection 

Data was captured from 14 patients with mild motor 

impairment (UPDRS < 15, defined as group 1) and 13 

patients with intermediate motor impairment (UPDRS > 20, 

defined as group 2), respectively. The control population 

consisted of 16 healthy subjects (patient and control 

characteristics in table 1). UPDRS rating was obtained by a 

movement disorder specialist prior to the biometric gait 

analysis. PD was staged according to Hoehn and Yahr 

(H&Y) [17]. Exclusion criteria consisted of non-PD related 

gait impairments (e.g. arthrosis). Patients also had to be able 

to walk independently (H&Y<4). Study was done after 

positive ethics votum (Ethics committee, FAU Erlangen-

Nuremberg Re.-No. 4208) and informed consent of 

participants. 

Subjects underwent standardized gait tests:  

1) 10-meter walk: The subjects were asked to walk for 10 

meters at a comfortable walking speed, corresponding to the 

item “gait” of the UPDRS – Part III [7, 18]. Subjects passed 

10 meter distance 4 times. 

2) Heel-toe tapping: While sitting, heel and toes had to be 

tapped alternately on the floor for 20 seconds. The test 

required a flexion mainly within the ankle, comparable to 

the item “leg agility” of the UPDRS [7]. 

3) Circling: While sitting, subjects had to perform a 

circling foot movement 5 - 10 cm above the floor for 20 

seconds. The diameter of the circles was required to be about 

30 cm. This test was designed in order to assess the ability to 

constantly move the feet without the influence of the body 

weight. 

C. Feature extraction 

Biometric features were extracted from the recorded 

gyroscope and accelerometer signals. Features were obtained 

from single steps and complete gait sequences. Additional

features were computed from the Fourier-Transform of gait 

sequences to incorporate a frequency based analysis [19].  

As features were computed for each shoe, axis and sensor, 

this procedure resulted in 290 features for the walking test. 

For the other tests no step dependent features were 

calculated, resulting in only 174 features per test. 

 
Fig. 1.  Sensor setup for data capturing: sports shoe with attached 
SHIMMER sensor unit 

 
Fig. 2. Signals of the gyroscope (z-axis, sagittal plane) during heel-toe 

tapping of a control (A) and a patient (B, UPDRS=8). Sensor signal is 

superposed with typical features.  

TABLE 1 

CHARACTERISTICS OF PATIENTS AND CONTROLS 

Characteristics IPS patients (n=27) Controls  

 

Group 1 

UPDRS <15 
(n=14) 

Group 2 

UPDRS >20 
(n=13) 

 

(n=16) 

Sex (m:f) 12:2 9:4 7:9 

Age (y) 63.4 ±9.3 66.6 ±10.5 64.9 ±6,9 
Age on disease 

begin (y) 
58.1 ±9.3 60.2±13.0  / 

Disease duration (y) 5.3 ±5.5 6.3 ±3.9  / 
UPDRS Motorscore 9.0 ±3.6 32.5 ±11.2  / 

L-Dopa Equivalent 

dose (mg) 
408 ±415 563 ±359  / 

Characteristics and clinical parameters of Parkinson`s patients and 

healthy controls (Mean ± standard deviation).  
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An exemplary gait signal of a patient and a control with 

typical features is shown in Fig. 2. Table 2 shows a selected 

set of features which is used for final classification results.  

D. Feature selection and classification 

Pattern recognition approaches were used for 

classification and feature selection. Due to the “No-Free-

Lunch-Theorem”, there is no optimal classifier for every 

given classification tasks [20]. Hence three different 

classifiers were evaluated in this study, Boosting with 

Decision Stump as a weak learner [21], Linear Discriminant 

Analysis (LDA) [22] and Support Vector Machines (SVM) 

with linear and RBF Kernel [22]. The classifiers were 

trained using the features to define decision boundaries for 

separation of the subgroups.  

In a next step, the number of features was reduced to the 

most relevant using Sequential Backward Selection [22]. 

This algorithm omitted one feature after another by using the 

classification accuracy as a criterion. The result was a subset 

of features that allowed an optimal distinction between the 

tested subgroups. Finally the specificity and sensitivity of 

this optimal feature set was calculated. 

The classification accuracy was assessed in all 

experiments with a leave-one-subject-out-cross-validation 

[20]. 

III. EXPERIMENTS AND RESULTS 

The current study aimed to develop an objective sensor 

based gait analysis system to identify gait patterns in PD and 

to distinguish between mild and severe impairment of gait. 

Therefore, three classification experiments were performed 

using the present subpopulations: control versus group 1 

(early diagnosis), control versus group 2 and group 1 versus 

group 2 (therapy monitoring). 

In a first step, each gait test was assessed separately. Best 

classifiers and features for each test were identified to reach 

optimal classification accuracy (Tab. 3). 

In a second step, the most accurate features of the 

individual tests were combined into a multi-test-classifier to 

further improve the classification of the subgroups (Tab. 4).

Improvement was expected because significant features and 

new combinations of them are usable for one classification 

task with data from all tests. 

Best classification of control versus group 1 resulted in a 

sensitivity of 88% and specificity of 86% using only the 10-

meter walk test. Distinction of both control versus group 2

and group 1 versus group 2 reached a sensitivity and 

specificity of 100% using a combination of all tests. The 

best overall accuracy was reached in each case using the 

LDA classifier. No classification improvement was reached 

with SVM classifier. 

IV. DISCUSSION 

Two different aims were investigated in the presented 

study:  

(1) Detection of gait symptoms correlating with mild 

motor impairment in PD compared to controls to support 

early diagnosis of PD. This was represented by the 

experiment control versus group 1. 

(2) Differentiation between mild and intermediate gait 

impairment in PD to support therapy monitoring in PD. This 

was represented by the experiment group 1 versus group 2. 

TABLE 2 

BIOMETRIC SIGNAL FEATURES  

Feature Name  Category Description  

1 Step duration Step feature Duration from the beginning of swing phase to end of stance phase 

2 Rise gradient of swing phase Step feature Gradient from begin to max. positive rotation of swing phase in sagittal plane,  

3 Fall gradient of swing phase Step feature Gradient from max. positive rotation of swing phase to heel-on in sagittal plane 
4 Standard deviation of minima Step feature Standard deviation of the max. negative foot rotation in sagittal plane during heel 

strike and toe-off in the stance phase of steps 

5 Maxima minima difference  Step feature Difference between max. positive foot rotation and heel-on in sagittal plane 
6 Variance Signal sequence Measure for signal spreading, defined as the square of standard deviation 

7 Integral Signal sequence Expresses the area of the region in xy-plane bounded by the signal 

8 Entropy Signal sequence Derived from information theory, a measure of the uncertainty of a signal [1] 
9 Dominant frequency Frequency analysis Characterizes the main speed of an exercise 

10 Energy ratio Frequency analysis Complete signal sequence energy divided by energy value of dominant frequency 

11 Energy in band 0.5 to 3 Hertz Frequency analysis Energy in a frequency band describes parts of distinct frequencies in the signal, 

typical frequency bands for specific movements can be defined [4] 12 Energy in band 3 to 8 Hertz Frequency analysis 

List of classification relevant features: step features extracted from gyroscope z-axis, signal sequence and frequency features usable for all axes of 

accelerometer and gyroscope signals 

TABLE 3 

CLASSIFICATION RESULTS - INDIVIDUAL TEST 

Experiment Exercise  Classifier Features  
Sensitivity / 

Specificity 

Control vs. 
group 1 

10-meter 
walk 

LDA 
1,2,3,4,5,
6,7,9,10, 

88 / 86 % 

Control vs. 

group 2 
Heel-toe  LDA 7,8,9,11 94 / 100 % 

Group 1 vs. 

group 2 
Circling Boosting 8,12 88 / 100 % 

For each test, classifiers, sensors and features were selected according 

to best sensitivity and specificity. Features used are listed in Table 2. 

TABLE 4 

CLASSIFICATION RESULTS - COMBINED TESTS 

Experiment Classifier Features  
Sensitivity / 

Specificity 

Control vs. 
group 1 

No improvement 

Control vs. 

group 2 
LDA 1,5,6,8,10,11 100 / 100 % 

Group 1 vs. 

group 2 
LDA 1,3,4,5,6,7,8,9,10,11 100 / 100 % 

Classifiers, sensors and features were selected according to best 

sensitivity and specificity. Features used are listed in Table 2. 
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For both of these tasks a high sensitivity and specificity 

could be reached using the proposed sensor based system. 

The presented classification results on data from 43 subjects 

promise a high practical relevance. For the evaluation of the 

quality of features and classifiers, the leave-one-subject-out-

cross-validation was used. This was done to prevent 

overfitting and to ensure a high generalization performance 

on unseen data [23] and leads to a high prospective 

relevance of the results. 

In contrast to previous studies [8, 11, 14], only two 

sensors were implemented in a ready-to-wear shoe. This 

easy applicable approach improves the adherence and may 

be easily integrated in daily life of affected patients. 

Another benefit is, that presented sensor system is able to 

classify different levels of gait impairment extending other 

studies that mainly focus on identification of PD patients [8, 

13].  

In relation to (1) the presented system can provide an 

objective diagnostic tool for health care providers. In 

combination with additional non-motor symptoms it allows 

to develop an objective risk score for PD [24]. 

Results from (2) show, that the system can rate different 

levels of gait impairment. Thus, the developed system may 

also be applicable to monitor motor fluctuations in 

individual patients occurring during the course of a day. As 

the presented system is small and unobtrusive, it could be 

used for smart home monitoring. This may help to adjust 

drug treatment on the basis of long term monitoring of motor 

symptoms. Additionally it might prevent falls and fall 

related injuries like pneumonia, which are the most frequent 

cause of death in Parkinson`s disease [25]. 

V. CONCLUSION 

We presented a sensor based system which is able to 

identify PD associated gait patterns and to objectively 

distinguish different levels of gait impairments. Our 

proposed biometric gait analysis system is lightweight, easy 

applicable and non-invasive, and may complement clinical 

data for diagnosis of PD. Additionally the system might be 

used for smart home monitoring and long term assessment 

of motor symptoms.  

Our aim for future research is to collect an even broader 

database, to further improve accuracy with an extended 

feature set and to finally come up with a medically approved 

system that can be implemented into everyday clinical 

practice. 
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