
  

  

Abstract— In this paper, a novel technique based on signal 
processing of breath sounds during wakefulness for prediction of 
obstructive sleep apnea (OSA) is proposed. We recorded tracheal 
breath sounds of 35 people with various severity of OSA and 17 
non-apneic individuals; the breath sounds were recorded in 
supine and upright positions during both nose and mouth 
breathing at medium flow rate.  Power spectrum, Kurtosis and 
Katz fractal dimension of the recorded signals in every posture 
and breathing maneuver were calculated. We used one-way 
ANOVA to select the features with most significant differences 
between the groups followed by the Maximum Relevancy 
Minimum Redundancy (mRMR) method to reduce the number of 
characteristic features to three, and investigated the separability 
of the groups based on the three selected features. The results are 
encouraging for classification of patients using the selected 
features.  Once being verified on a larger population, the 
proposed method offers a fast, simple and non-invasive screening 
tool for prediction of OSA during wakefulness. 

 

I. INTRODUCTION 

OBSTRUCTIVE Sleep Apnea (OSA) is a common respiratory 

disorder. By definition, sleep apnea is the cessation of airflow 
to the lungs (during sleep) that lasts for at least 10 seconds and 
is associated with more than 4% drop of the blood's Oxygen 
saturation (SaO2) level.  Sleep apnea causes daytime 
sleepiness, poor job performance, and increased risk of 
accidents and lack of concentration [1-3]. Sleep apnea occurs 
more in males with a higher prevalence in elderly [4]. It is also 
common in people with high blood pressure, smokers and 
those with narrowed airway due to tonsils or adenoids[5]. 
The current Gold Standard diagnostic tool for sleep apnea is 
Polysomnography (PSG) during the entire night. The standard 
PSG consists of recording various biological signals including 
EEG, ECG, EMG of chins and legs, nasal airflow, electro-
oculogram (EOG), abdominal and thoracic movements [6]. It 
is an expensive test for health care system with a very long 
waiting time (especially in Canada) for patients to receive the 
assessment. Therefore, many studies have sought developing 
alternative, non-invasive and portable OSA monitoring tools. 
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While there have been many studies and developed 
technologies to detect OSA during sleep, few studies 
attempted to predict OSA during wakefulness [7-10].  In [7] a 
method based on Ultrafast Magnetic Resonance Imaging from 
pharyngeal airway was proposed both during wakefulness and 
sleep. Although, their results were highly accurate during 
sleep; they achieved only 46% accuracy during wakefulness.  
 Recently, a group of researchers investigated the correlation 
of speech disorder and OSA [8, 9] . The acoustic features of 18 
OSA and 10 non-OSA speakers were compared, and 
substantial differences were found [8]. Then, by combining 
feature selection technique and Gaussian mixture model 
(GMM)-based classifier patients with OSA were detected [9].  
Although good results were achieved, the feature space 
dimension was too high for their database size (over-fitting) 
and they didn’t provide physiological reasons for the 
calculated features. 

On the other hand, it has been shown that patients with OSA 
may have a defective ability to dilate the pharynx during 
inspiration [11]. In addition, the tracheal breath sound intensity 
of people with OSA was shown to increase in supine position 
compared to that of the control group [10]. Considering that 
people with some degrees of upper airway obstruction are 
more prone to develop OSA,  we hypothesize that there must 
be noticeable differences among the nose and mouth breathing 
sounds characteristics recorded from people with different 
OSA severity in supine and upright positions.   

 Our feasibility study of the above hypothesis has shown 
encouraging results [12]. In this study, we increased the 
number of subjects to 52 (as opposed to 16 in [12]), and 
investigated features that were statistically different between 
OSA patients with different severity. The severity of OSA was 
determined by full-night PSG assessment.  
We recorded tracheal breath sound signals during nose and 
mouth breathing maneuvers in both supine and upright 
positions. The Power Spectrum Density (PSD) [13], Fractal 
Dimension (FD) using Katz algorithm [14] and Kurtosis [15] 
of the tracheal breath sound signals in each respiratory phase 
of each signal, recorded in each position and breathing 
maneuver, were calculated. We used one-way analysis of 
variance (ANOVA) [16] to select the features with most 
significant differences between the groups followed by the 
Maximum Relevancy Minimum Redundancy (mRMR) method 
to reduce the number of characteristic features to three, and 
investigate the separability of the groups based on the three 
selected features. 
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TABLE I 
AVERAGE AGE, BODY MASS INDEX (BMI), AHI VALUES OF THE 

PARTICIPANTS.  
Groups # of 

Subjects 
AGE BMI AHI 

AHI<5 17 40.3
± 8.0 

26.5
±  
5.7   

1.3 ±  1.7 

AHI>5 
& 
AHI<15 

13 47.8
± 9.6 

30.8
±  
6.3 

11.4 ±  2.8 

AHI>15 
& 
AHI<30 

7 50.6
± 6.8 

29.2
± 3.1 

23.8 ±  4.4 

AHI>30 15 49.9
±
10.4 

38.4
± 5.5 

76.7 ±  

40.3 

II. METHOD 

A. Data 
Fifty two individuals (37 males) suspected of having OSA, 
who were referred to the Sleep Disorder Center at Misericordia 
Health Center, Winnipeg MB, gave written consent to be 
enrolled in this study.  The study was approved by the Ethics 
Board of the University of Manitoba. All of the study 
participants went through full night PSG assessment. Based on 
their apnea/hypopnea (AHI) scores (determined by the PSG), 
we grouped them into non-OSA (AHI < 5), mild OSA (5≤ 
AHI < 15), moderate OSA (15≤ AHI < 30) and severe OSA 
(30≤ AHI). The average age, body mass index (BMI) and AHI 
values of the participants are summarized in Table I. 
Tracheal breath sound signals were collected by a Sony 
microphone (ECM-77B) embedded in a chamber (diameter of 
6mm) placed over the suprasternal notch of trachea using 
double-sided adhesive tapes. The sound signals were 
amplified, band pass filtered (0.05-5000 Hz), and digitized at 
10240 Hz.  The recordings were done in two different body 
positions: upright and supine. In each body position breath 
sounds were recorded during two breathing maneuvers for at 
least five full breaths in each trial. The two breathing 
maneuvers were breathing through the nose and then through 
the mouth with a nose clip in place at medium flow rate.  

A. Pre-Processing 
Inspiration is an active process, while expiration is a passive 
process. Therefore, the inspiration and expiration phases were 
analyzed separately. The signals were band pass filtered (150-
800 Hz) to reduce the effect of heart sound and background 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
noise. The onset of each phase was calculated using our 
method detailed in [17]. Given that we did not record 
respiratory flow, to ensure the phase labels, we always started 

each recording at the inspiration phase.  
 

B. Feature Extraction  
For each respiratory phase in each breath, the PSD (using 
Welch method) [13], FD (using Katz algorithm [14]) and 
Kurtosis [13-15] were calculated in 50ms windows (with 50% 
overlap with the adjacent windows) over the 150-800 Hz; they 
were called ܲ௕೔  ௕೔ respectively, where biݐݎݑܭ ௕೔ andܦܨ  ,
represent the breath number 1 to 5. Then, the average curves of 
the ܲ௕೔  ௕೔ were calculated over five breathݐݎݑܭ ௕೔ andܦܨ  ,
phases denoted as ݁ݒܣ௉௢௪, ݁ݒܣி஽ and ݁ݒܣ௄௨௥௧. The variance 
and median values of these average curves, denoted 
as ܸܽݎ௣௢௪௔௩௘ ௣௢௪௔௩௘݀݁ܯ , ி஽௔௩௘ݎܸܽ , ௄௨௥௧௔௩௘ݎܸܽ ,ி஽௔௩௘݀݁ܯ , and ݀݁ܯ௄௨௥௧௔௩௘ , 
were calculated and used as the features to investigate further.  

 Having recorded in two positions and at each position by 
two breathing maneuvers, for each subject we have had 4 
recorded sound signals that by analyzing inspiratory and 
expiratory phases separately would result in 8 signals per 
subject. In addition, we investigated the differences between 
nose and mouth breathing in each position as well as the 
difference between the positions in each nose and mouth 
breathing signals. Therefore, extracting the 6 features from 
each signal in the above mentioned conditions would result in 
96 features per subject in total.   

C. Feature Selection 
First, we divided the study participants into two groups: 

severe OSA (AHI>30) and non-OSA (AHI<5). Then, one-way 
ANOVA test were run on each of the 96 features separately. 
Twenty one features were found to be statistically significantly 
different (p <0.05) between the severe OSA and non-OSA 
groups. Second, we divided the study participants into groups 
of   AHI>15 and AHI<15, and ran the one-way ANOVA test 
again on the original 96 feature set. This time, 17 features were 
found to be statistically significantly different (p <0.05) 
between the mentioned groups. Then, out of the 21 and 17 
features that were found to be statistically significantly 
different between the groups, we selected the common features 
(12) for further analysis. 

On the next stage, a search algorithm was needed to find the 
best subspace of features. We used the  Maximum Relevancy 
Minimum Redundancy (mRMR) method [18] to select the best 
3-D subspace to maximize separation of the subjects with 
AHI<15 from subjects with AHI>15; this separation is the 
most challenging as there is no gap of AHI between the 
groups. The selected features by the mRMR method jointly 
have the largest dependency on the target class. This procedure 
is called Max-Dependency: ݉ܽܦݔሺܵ, ܿሻ, ܦ ൌ ,௜ݔሺሼܫ ݅ ൌ 1, … , ݉ሽ; ܿሻ,  (1) 
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 Fig. 1. (a) The  mean and standard deviation of the MVSNI for 
participants with AHI<15 and AHI>15;(b) the mean and 
standard deviation of the MPUNI for the mentioned groups; (c) 
the mean and standard deviation of the MPUNI for the 
mentioned groups. 

where, ܫ represents mutual information; ሺሼݔ௜, ݅ ൌ 1, … , ݉ሽ; ܿሻ ൌ ,ሺܵܫ ܿሻ ,   and takes the following 
form: ܫሺܵ௠, ܿሻ ൌ׬ … ׬ ,ଵݔሺ݌ … , ,௠ݔ ܿሻ ݃݋݈ ௣ሺ௫భ,…,௫೘,௖ሻ௣ሺ௫భ,…,௫೘ሻ௣ሺ௖ሻ ଵݔ݀ …  ௠݀ܿ    (2)ݔ݀
In the Max-Relevance approach, ܦሺܵ, ܿሻ  in (1) is 
approximated with the mean value of all mutual information 
values between individual features ݔ௜ and the class c: ݉ܽܦ ݔሺܵ, ܿሻ, ܦ ൌ ଵ|ௌ| ∑ ;௜ݔሺܫ ܿሻ௫೔אௌ                                         (3) 
As the dependency among these ݉ features could be high, 
minimal redundancy criterion was defined to reduce 
redundancy: min ܴሺܵ, ܿሻ, ܴ ൌ ଵ|ௌ|మ ∑ ;௜ݔሺܫ ௌא௝ሻ௫೔ݔ .                                     (4) 
By combining (3) and (4), the minimal-redundancy-maximal-
relevance criterion is defined as: ݉ܽݔ Φሺܦ, ܴሻ,Φ ൌ ܦ െ ܴ                                                     (5) 
In order to find the subset ܵ௠, we used incremental search 
method. Suppose that we chose ܵ௠ିଵ; the ݉th feature is 
chosen from the set ሼܺ െ ܵ௠ିଵሽ by maximizing the following 
condition: ݉ܽݔ௫ೕא௑ିௌ೘షభሾܫ൫ݔ௝; ܿ൯ െ ଵ௠ିଵ ∑ ;௜ݔሺܫ ௌ೘షభא௝ሻ௫೔ݔ ሿ                (6) 

Applying the above mentioned method resulted in the 
following 3 best features: 

௣௢௪௔௩௘݀݁ܯ :ܫܷܰܲܯ •  of the  Upright position, Nose 
breathing, Inspiratory phase  

௄௨௥௧௔௩௘݀݁ܯ :ܫܰܵܭܯ •  of the Supine position, Nose 
Breathing, Inspiratory phase 

௄௨௥௧௔௩௘ݎܸܽ :ܫܷܰܭܸ •  of the  Upright position, Nose 
breathing, Inspiratory phase  

These features were calculated for every subject, and used to 
investigate whether they can cluster patients with different 
severity of AHI. 

III. RESULT & DISCUSSION: 
Figure 1(a) shows mean and standard deviation of the 

MPUNI calculated for participants with AHI<15 and AHI>15. 
The results show the patients with higher AHI have higher 
MPUNI values. This result is congruent with physiological 
facts about airway structure in people with OSA. It is known 
that people with OSA disorder usually have smaller and more 
collapsible pharynx than healthy individuals [19-23].  
Individuals with OSA have been shown to increase their 
pharynx dilator muscle activities during wakefulness to 
compensate pharyngeal problems [24]. On the other hand, it 
has been shown that the average power of tracheal breath 
sound is representative of the pharyngeal pressure [25]. Hence, 
the increase in the dilator muscle activities in OSA patients 
during wakefulness might be average power of the upright 
nose breathing, which has been shown to be higher for people 
with OSA. 

 

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1(b) and Fig. 1(c) show mean and standard deviation 
of the MKSNI and VKUNI, calculated for participants with 
AHI<15 and AHI>15.  Figure 2 (a) and (b) show the 3-D 
scatter plot the three selected best features of subjects with 
AHI<15 and AHI>15 and subjects with AHI<5 and AHI>30, 
respectively.  As it can be seen, data points with lower AHI are 
more concentrated in the top left corner of scatter plot, while 
the data points with higher AHI are distributed toward the 
opposite corner. In addition, the subjects in Figure 2 (b) are 
either form non-apneic subjects (AHI<5) or patients with 
severe OSA (AHI>30); there is a gap between the AHI of each 
group. Therefore, Fig. 2 (b) shows more distinguishable 
clusters of subjects.  

Furthermore, it can be seen that, MKSNI and VKUNI are 
providing somehow the same information. In other words, the  
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groups can be distinguished by these two features with almost 
same accuracy. Hence, using a 2-D classification with MPUNI  
and VKUNI features must result in the same accuracy as a 3-D 
classification.  

IV. CONCLUSION 
In this study a novel method using breath sound analysis has 

been proposed for OSA prediction during wakefulness. Three 
features representing average power and variation in the 
kurtosis of the sound signals at different positions were shown 
to be characteristic features to provide a reliable screening tool 
for OSA and predicting its severity. The proposed method was 
tested on 52 subjects and the pilot results are very encouraging 
to show a good seperability between the groups with different 
levels of OSA.  The results of this study pave the way for a 
simple, non-invasive, and inexpensive screening tool for 
patients suspected of OSA to identify the level of OSA 
severity during wakefulness within a few minutes of breath 
sounds recording.  
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  Fig. 2. (a) The 3-D scatter plot (MPUNI, MKSNI, 
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subjects with AHI<5 and AHI>30. 
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