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Abstract—Tooth bleaching is receiving an increasing interest
by patients and dentists since it is a relatively non-invasive
approach for whitening and lightening teeth. Instrument de-
signed for tooth color measurements and visual assessment with
commercial shade guides are nowadays used to evaluate the
tooth color. However, the degree of color change after tooth
bleaching varied substantially among studies and currently,
there are no objective guidelines to predict the effectiveness
of a tooth bleaching treatment. Fuzzy Logic is a well known
paradigm for data modelling; their main advantage is their
ability to provide an interpretable set of rules that can be
later used by the scientists. However these models have the
problem that the global approximation optimization can lead
to a deficient rule local modelling. This work proposes a
modified fuzzy model that performs a simultaneous global
and local modelling. This property is reached thanks to a
special partitioning of the input space in the fuzzy system.
The proposed approach is used to approximate a set of
color measurements taken after a bleaching treatment using
the pre-bleaching measurements. The system uses as rule
antecedents the colorimetric values of the VITA commercial
shade guide. The expected post-bleaching colorimetric values
are immediately obtained from the local models (rules) of
the system thanks to the proposed modified fuzzy model.
Additionally, these post-bleaching CIELAB coordinate values
have been associated with VITA shades through the evaluation
of their respective membership functions, approximating which
VITA shades are expected after the treatment for each pre-
bleaching VITA shade.

Keywords-Local-Global Fuzzy Modelling, TSK Fuzzy Sys-
tems, Data Mining, Prediction of Color Change, CIELAB
Space, Tooth Bleaching

I. INTRODUCTION

Bleaching of teeth has become an essential component

of conservative esthetic dentistry, as it is a non-restorative

treatment for whitening of discolored teeth. The current

bleaching mechanisms are based on the application of

hydrogen-peroxide-releasing agent on external tooth surfaces

to penetrate the tooth and produce free radicals that oxidize

organic stains.

The most common bleaching technique uses hydrogen

peroxide or carbamide as the bleaching agent. It was re-

ported [1] that bleaching with 10%-20% carbamide per-

oxide is a simple, user-friendly, effective, and inexpensive

technique. Numerous clinical studies have documented the

effectiveness of bleaching in changing tooth color through

whitening and lightening.

The color and appearance of teeth is a complex phe-

nomenon which depends of many factors (scattering, ab-

sorption, translucency, etc.). The measurement of tooth color

is possible via a number of methods including instruments

designed for tooth color measurement and visual assessment

with commercial shade guides. These shade guides are the

most common method in clinic practice due to its inex-

pensiveness and ease of use. However, perceptional color

evaluation is subjective, and it is often difficult to match

a natural tooth with a shade guide. The high frequency of

errors associated with the use of commercial shade guide

systems has been documented [2] and therefore instrumental

measurements are needed for an adequate color specifica-

tion.

In this context, it is therefore necessary for an adequate

clinic practice to have at disposal a direct association among

instrumental color measurements and commercial guides.

This association will allow us to establish objective guide-

lines to inform the patients about the expected teeth shades

after a bleaching treatment.

In order to carry out this objective, a set of instrumental

in vivo teeth color measurements were performed on a set

of patients before and after a bleaching treatment using

CIELAB space [3]. Similarly, a color measurement of the

well-known commercial shade guide VITA Classical1 was

carried out.

With the obtained data, a fuzzy logic approach has been

1VITA Classical is the most extended guide in dentistry clinics due to
its ease of use and to its close relation with dental restoration systems.
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used to design an inference model formed by a rule set

whose antecedents correspond to the CIELAB coordinates

of the VITA Classical shade guide. The optimized rules

establish which post-bleaching color is expectable for each

pre-bleaching shade in the VITA guide. This determina-

tion of the post-bleaching expectable value for each pre-

bleaching VITA shade, as information directly extracted

from the designed fuzzy model, is possible thanks to a novel

modification of the input space subdivision that allow us to

obtain a precise local modelling, apart from the effective

global modeling. Finally, the post-bleaching CIELAB coor-

dinates for each pre-bleaching shade have been corresponded

with VITA guide shades according to the fuzzy membership

functions designed for those shades.

II. TOOTH COLOR MEASUREMENTS IN THE CIELAB

COLOR SPACE

A total of 40 subjects, 22 males and 18 females with

an average age of 42,8 years, were enrolled in a home-

bleaching study at the Stomatology Department in Granada2.

The volunteers were examined and selected in the clinical

facilities of the Stomatology Department attending to a

certain set of inclusion criteria adapted to this study. All

volunteers used a 20% carbamide peroxide tooth-bleaching

agent (Opalescence 20% PF, Ultradent Products Inc., South

Jordan, UT, USA) in the custom trays with reservoirs for 2

hours once a dat for 2 weeks.

Subsequently, the color of the patients’ teeth was deter-

mined objectively using a spectroradiometer (SpectraScan

PR-704, Photo Research inc., Chatsworth, USA) with a 4%

measurement accuracy. These measurements were repeated

three times to each tooth at baseline, on the day before,

and 14 days after the initiation of the bleaching procedure.

In order to ensure that all measurements were realized in

conditions of standard light, we used the lamp Demetron

Shade Light (Kerr) as source simulating the spectral relative

irradiance of CIE standard illuminant D65. Illuminating and

measuring configurations were CIE d/0◦ and the CIE 1964

10◦ Supplementary Standard Colorimetric observer.

CIELAB coordinates L*, a* and b* for pre-bleaching

(L∗
i , a

∗
i , b

∗
i ) and post-bleaching (L∗

f , a∗
f , b∗f ) were obtained.

The L*, a* and b* values were averaged to establish a single

set of value for each teeth. In each case, the resulting stan-

dard deviations were lower than the instrumental accuracy

(4%). Table I shows the ranges of the pre and post bleaching

values for coordinates L*, a* and b*.

CIE color coordinates L*, a* and b* for the VITA-Classic

shade guide were also obtained under the same measurement

conditions. The values for each of the shades is shown

in Table II. The Vita-Classical shades present variations in

saturation, hue and luminance, showing different shades that

2After the corresponding approval by the Ethical Committee of Human
Investigation at the University of Granada

Table I
RANGES OF PRE-BLEACHING AND POST-BLEACHING FOR COORDINATES

L*, A* AND B*

CIELAB Pre-bleaching Post-bleaching
Coord. Min Max Mean Min Max Mean

L* 32.14 79.85 56.37 33.20 82.16 59.29
a* 4.06 18.50 7.61 1.77 11.02 5.72
b* 7.37 21.78 14.67 4.82 18.04 11.17

Table II
CIELAB COORDINATES FOR VITA-CLASSICAL SHADES

VITA-Classical
shades L* a* b*

C4 34,92 7,23 12,87
A4 43,05 8,34 14,94
C3 46,29 6,78 12,88
B4 50,02 8,17 18,33

A3,5 48,94 8,49 15,7
B3 49,28 7,97 16,83
A3 56,16 7,96 14,58
D3 55,65 7,19 11,69
D4 55,57 6,18 14,4
C2 54,83 6,87 13,4
C1 55,87 5,15 8,81
A2 60,55 6,99 12,46
D2 59,41 5,59 8,59
B2 61,9 6,09 12,55
A1 63,46 5,05 9,11
B1 59,85 4,24 7,34

teeth color can present in the patients. Figure 1 shows the

data distribution in the CIELAB space, together with the

VITA-Classical shades distribution within the same space3.

In [4] it was discussed that the whitening process should

in principle provide an approach to (0,0) in the chromatic

coordinates a* and b*, and an increase in the L* coordinates

increasing the luminance. This was verified as the variations

in coordinates L*, a* and b* followed similar-to-normal

distributions with mean and deviations equal to (2.9, 7.2),

(-1.8, 1.7) and (-3.5, 2.5) respectively. The means of the

a* and b* were negative while for the L* it was positive.

Those values show the approach of the teeth shade towards

the model white (100, 0, 0) after the bleaching treatment.

The standard deviation in coordinate L* was strong show-

ing a larger dispersion of the measurements taken in the

CIELAB space. This and other studies attempted to establish

a colorimetric guideline to predict the effectiveness of tooth

bleaching with respect to the original tooth color in order

to make tooth bleaching a more reliable dental treatment,

obtaining however indeterminate conclusions and sometimes

contradictory results [5].

3For plane b*L*, a fictitious line joins the VITA Shades from C4 to B1
according to Table II
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Figure 1. Data and VITA-Classical shade distribution in the CIELAB
space in planes a*b* and b*L*

III. FUZZY LOGIC APPROACH FOR VITA

IDENTIFICATION OF TOOTH COLOR MEASUREMENTS

AND FUZZY INFERENCE FOR COLOR CHANGE

PREDICTION

The use of fuzzy logic for color representation has been

traditionally employed for the color naming problem and

for control tasks [6] [7]. Specifically in the dentistry field,

some works have dealt with the characterization of tooth

surface in parodontological practice and the soft removal

of dental calculus [8], or to detection and quantification of

dental plaque [9].

This work proposes the use of a fuzzy inference process

as a way to perform data mining to extract information

about the behavior of a bleaching treatment using VITA

shade guides. On that purpose, a rule-based fuzzy model

will be designed with antecedents corresponding to VITA

shades, and will be optimized through least-squares to obtain

the optimal consequents in the CIELAB coordinates L*,

a* and b* for those initial shades. Since it is a Multiple-

Input Multiple-Output model, three separated optimizations

for each rule output coordinate will be performed.

Scatter-partitioning fuzzy models however present the

problem that, due to the possible overlapping of the rules

at their centres, their consequents might not appropriately

be associated with the effective area they are covering

and representing. In order to obtain rule consequents that

effectively model the area represented by their correspond-

ing antecedents, apart from performing the desired global

modelling, a modified novel fuzzy model obtained from

previous approaches for grid-based fuzzy systems will be

applied. Thanks to this characteristic, the rule system built

will be able to describe the CIELAB post-bleaching values

for each VITA pre-bleaching shade. The correspondence

of the CIELAB post-bleaching expected values with VITA

post-bleaching shades will be obtained through the same

fuzzy membership functions designed for the VITA-based

rules.

A. Rules shape using VITA values in the antecedents

Each possible pre-bleaching shade s will define a Takagi-

Sugeno-Kang (TSK) rule with the following shape:

IF L∗
i is ̂VITAC

s

L∗ AND a∗
i is ̂VITAC

s

a∗
AND b∗i is ̂VITAC

s

b∗ THEN
L∗

f = expectedsL∗
f AND

a∗
f = expectedsa∗

f AND
b∗f = expectedsb∗f

(1)

where ̂V ITAC
s

L∗, ̂V ITAC
s

a∗ and ̂V ITAC
s

b∗ are fuzzy

sets centered in the corresponding values of shade s for

coordinates L*, a* and b* given in Table II. The fuzzy

sets were considered gaussian and for a fair partitioning

of the input space, the radius was calculated for each

center according to the distance to the nearest center in

the three dimensional space [10]. The optimally obtained

expectedsL∗
f , expectedsa∗

f and expectedsb∗f , will corre-

spond to the expected CIELAB value for those teeth with

shade equal or around VITA shade s.

B. A Local-Global modelling approach for fuzzy systems

When dealing with the optimization of a TSK fuzzy

system, global accuracy is usually the single objective to

optimize, and the problem of local model optimization is

barely addressed [11]. Some works have studied multiob-

jective optimization formulations of TSK fuzzy systems,

that deal with both local and global modelling [12]. On the

other hand, some approaches have been presented for grid-

based TSK fuzzy systems that allow us to directly keep the

interpretation of the local models whereas they are globally

trained from a set of input/output data [13] [14]. However in

this work a scatter-partitioning fuzzy system is needed; i.e.,

the rules and the local models to be extracted are placed in

specific points in the n-dimensional space.

In order to obtain a simultaneous global-local modelling,

it is needed that the overlapping degree of all the rules

activations vanish at each rule centre, without loosing the

approximation and interpolation properties of the set of

fuzzy rules and of the fuzzy inference process. This way,

every point of the n-dimensional space �ck identified by the
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centre of a rule k, is only affected by its respective rule

in the global system output function, which is calculated as

shown in equation 2:

F̂ (�x) =

K∑
k=1

μk(�x)yk

K∑
k=1

μk(�x)
(2)

where K is the number of rules of the system, yk (consid-

ering a single-output system) are their consequents, and the

μk(�x) =
∏n

i=1 μk
i (xi) are the activations of the rules for an

n-dimensional problem, that when using Gaussian kernels

can be expressed in each dimension as :

μk
i (xi) = e

− (xi−ck
i
)2

2σk
i
2

, (3)

being ck
i and σk

i the center and radius of the Gaussian

function of rule k at dimension i.

For the sake of simplicity, we first explain how the

special partitioning of the input space with the overlapping

properties needed will be performed for a one-dimensional

case. As it will be shown, it can be easily extrapolated to

a general case. Let us assume the simple case of a one-

dimensional space with domain [0,1] with two rules with

gaussian membership functions (MF) centred for example

in c1 = 0.2 and c2 = 0.8 with σ = 0.3 (see Figure 2.(a)). In

this case, there is a moderated overlapping between the two

rule activations. In order to comply with the afore-mentioned

overlapping conditions we will allow the domain of the first

rule activation μ1(x) to be limited by the function 1−μ2(x).
That is, when the activation value of the opposite rule is 1,

the first rule activation will be forced to take the value 0.

That is, the final activation value for any point in the system

using normalization would be

μ1∗(x) = μ1(x)
(
1 − μ2(x)

)
,

μ̂1∗(x) = μ1∗(x)
μ1∗(x)+μ2∗(x)

(4)

μ2∗(x) = μ2(x)
(
1 − μ1(x)

)
,

μ̂2∗(x) = μ2∗(x)
μ1∗(x)+μ2∗(x)

(5)

Generalizing to the n-dimensional case, the activation

value of the k-th rule is obtained by the following equation

μk∗(�x) = μk(�x)
K∏

j=1;
j �=k

(
1 − μj(�x)

)
(6)

Therefore, for any given number of rules K, the general

expression for the TSK fuzzy system output, using normal-

ization (which forces the activation value of the rules to sum

up to one in every point) can be calculated as

(a)

(b)

Figure 2. a) Original μ1 and μ2 MFs for the one-dimensional example. b)
Normalized final MFs activations using the modified calculation μ̂1∗ and
μ̂2∗.

F̂ (�x) =
K∑

k=1

μ̂k∗(�x)yk =

=

K∑
k=1

⎛
⎝μk(�x)

K∏
j=1;
j �=k

(1−μj(�x))

⎞
⎠yk

K∑
k=1

⎛
⎝μk(�x)

K∏
j=1;
j �=k

(1−μj(�x))

⎞
⎠

(7)

where μ̂k∗(�x) = μk∗(�x)/
K∑

j=1

μj∗(�x) is the normalized

activation value for rule k.

With this new formulation of the system’s output given in

equation 7, the final normalized rules activations are modi-

fied so that they consider the relative positioning of each rule

with respect to the others. Moreover, the output function of

the proposed model is continuous and differentiable, since
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it is a linear composition of continuous and differentiable

functions. It is furthermore immediate to deduce that the

following properties hold, due to the continuity of the

gaussian function:

μ̂2∗(c1) = 0; μ̂1∗(c1) = 1;⇒ F̂ (c1) = y1(c1) = a1

μ̂1∗(c2) = 0; μ̂2∗(c2) = 1;⇒ F̂ (c2) = y2(c2) = a2 (8)

Note that those properties are hold thanks to the use of

the designed partitioning. Thus, according to equation 8, it

holds that the consequents yk of the rules are exactly the

values of the fuzzy system output around the respective

rule centre. Those results can directly be extrapolated to

the n-dimensional case, thanks to the continuity of the

compounded functions.

C. Optimization of the VITA-based fuzzy system

A fuzzy system has been designed with K = 16 rules

corresponding to the values of the VITA Classical shades in

the n = 3 dimensional CIELAB space. The data were nor-

malized to be inside the range [0,1] in the three dimensions

L*, a* and b*, in order to provide the same importance to

the three dimensions; note that dimension L* has a wider

range of values but with a higher dispersion [4]. The rule

centres have been initialized according to the VITA Classical

CIELAB values as a way to cluster the possible values for

pre-bleaching shades, so the rules have the shape shown in

equation 1. Since the model output function (Eq. 2) is linear

with respect to all the rules consequents, given a set of M
input/output data D = (({L∗

i , a
∗
i , b

∗
i }1, {L∗

f , a∗
f , b∗f}1), . . . ,

({L∗
i , a

∗
i , b

∗
i }M , {L∗

f , a∗
f , b∗f}M )), it is possible to optimally

obtain these parameters through the use of a wide range of

mathematical methods. In this work we will use the Least

Square Error (LSE) approach for the optimization of the

consequents. Singular Value Decomposition (SVD) was used

to solve the three linear equation system constructed, obtain-

ing the L*, a* and b* output consequents. The objective in

each case is to minimize the mean square error function

J =
∑

m∈D

(
F̂m ({L∗

i , a
∗
i , b

∗
i }m) − ym

)2

, where for each

sample m, F̂ represents L̂∗
f , â∗

f and b̂∗f and ym represents

L∗
f , a∗

f and b∗f in each case.

IV. DATA MINING FROM THE FUZZY SYSTEM

From the 16 rules, four of them were eliminated from the

optimization process since they do not present a sufficient

data coverage; i.e. there were no teeth found with pre-

bleaching shade similar to VITA shades B1, A1, D2 and

C1. The 12 remaining rules with optimal consequents are

the following

IF L∗
i is B̂2L∗ AND a∗

i is B̂2a∗
AND b∗i is B̂2b∗ THEN
L∗

f = 67.43 AND a∗
f = 4.69 AND b∗f = 9.51

IF L∗
i is Â2L∗ AND a∗

i is Â2a∗
AND b∗i is Â2b∗ THEN
L∗

f = 64.02 AND a∗
f = 4.73 AND b∗f = 8.78

IF L∗
i is Ĉ2L∗ AND a∗

i is Ĉ2a∗
AND b∗i is Ĉ2b∗ THEN
L∗

f = 55.30 AND a∗
f = 6.58 AND b∗f = 11.90

IF L∗
i is D̂4L∗ AND a∗

i is D̂4a∗
AND b∗i is D̂4b∗ THEN
L∗

f = 59.40 AND a∗
f = 4.16 AND b∗f = 11.27

IF L∗
i is D̂3L∗ AND a∗

i is D̂3a∗
AND b∗i is D̂3b∗ THEN
L∗

f = 57.77 AND a∗
f = 3.83 AND b∗f = 5.38

. . .

(9)

This optimal set of rules provides a standard error of

7.17 in coordinate L*, 1.39 in coordinate a* and 2.28 in

coordinate b*, similar to those obtained using multivariate

linear models in the previous work [4] (standard errors

equal to 6.72, 1.41 and 2.15 in coordinates L*, a* and b*

respectively). A confidence value for each fuzzy rule was

calculated as the mean standard error contributed by the rule

to the error committed in the CIELAB tridimensional space,

according to the following formula:

confid.valuek =
∑

m∈D

‖ �̂F
m

− �ym‖ · μ̂k∗(�xm) (10)

where �̂F
m

= {â∗
f , b̂∗f , L̂∗

f}m are the estimated post-

bleaching CIELAB coordinate values for sample m, �ym =
{L∗

f , a∗
f , b∗f}m its post-bleaching coordinate values (of sam-

ple m), and μ̂k∗(�xm) the activation value of rule k for its

pre-bleaching coordinate values, �xm = {L∗
i , a

∗
i , b

∗
i }m. Last

column of Table III shows the confidence values for the

rules (the mean error for the whole set of samples in the

tridimensional space is 6.5).

Once the post-bleaching CIELAB coordinate values are

obtained for each pre-bleaching VITA shade, they were

fuzzified in order to identify which VITA shades corre-

spond to those post-bleaching values. Table III show the

three VITA shades with a higher correspondence with each

post-bleaching CIELAB coordinate values, i.e. the post-

bleaching VITA shades expectable for each possible VITA

pre-bleaching shade after the treatment. These VITA shades

are obtained through evaluating their membership function

for each post-bleaching CIELAB values, and taking those

VITA shades that were most activated (the membership value

for each instance is also shown in Table III).
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Table III
POST-BLEACHING VITA SHADES EXPECTED FOR EACH

PRE-BLEACHING VITA SHADE

VITA-Classical
pre-bl. post-bleaching confid.
shade shade 1 shade 2 shade 3 value

C4 C3 (0.71) C4 (0.29) 7.98
A4 C3 (0.77) C4 (0.22) 5.35
C3 C1 (0.52) B1 (0.23) A1 (0.09) 7.10
B4 C2 (0.34) A3 (0.28) D4 (0.18) 6.87

A3,5 D3 (0.57) C2 (0.12) A2 (0.10) 4.72
B3 C2 (0.47) D4 (0.15) A3 (0.15) 6.62
A3 B2 (0.78) A2 (0.19) 7.34
D3 B1 (1.00) 6.33
D4 B1 (0.72) A1(0.24) 5.84
C2 A2 (0.55) B2(0.38) 5.05
A2 A1 (0.65) B1(0.31) 4.18
B2 A1 (0.79) B1(0.21) 5.20

V. CONCLUSIONS AND FUTURE WORK

This work has proposed a fuzzy-logic based approach

in order to model a set of pre- and post-bleaching tooth

colorimetric values through a set of rules whose antecedents

correspond to the chromatic coordinate values of a VITA

guide. A novel proposed fuzzy model allows to obtain a

global and local efficient modelling that obtains the exact

colorimetric expected values for each possible pre-bleaching

shade. Additionally, an association between the expected

post-bleaching values and VITA shades was performed, and

a confidence value was obtained for the rules extracted.

This work has showed that it is possible to establish a

correspondence between colorimetric measurements and a

well-known guide commonly used in dentistry clinics. As

future work, we plan to corroborate the results obtained in

this work with a clinic study of the subjective estimations of

post-bleaching shades performed by dentistry practitioners.

Additionally, this study should be extended to consider

commercial guides recently appeared and appointed to the

evaluation of bleaching treatments.
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