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Abstract— Some types of biometric patterns can be 
represented as a collection of variable-length 
interconnected lines. This is the case of handwriting 
signature strokes, palmprint lines or infrared hand vein 
data. Typical variations in size, shape and orientation of 
these patterns for the same person make difficult to 
develop reliable biometric verification systems for them. 
Fuzzy snakes have been successfully applied to the off-
line signature verification problem where the 
corresponding energy function is described by a set of 
fuzzy rules. In this paper, we extend the fuzzy shape-
memory snake model by introducing a new external 
energy term: the difference between the angle of the 
tangent to the snake in a control point and the angle of 
the tangent to a specific stroke point (for all the strokes of 
the test pattern). Experimental results for both off-line 
signature and palmprint verifications have shown that 
the new fuzzy approach outperforms other snake models. 
 

Keywords- snakes; biometrics; off-line verification 
problem; handwritten signatures; palmprints. 

 

I. INTRODUCTION 
Computer biometrics refers to specific modes of 

uniquely recognizing or authenticating humans based 
upon one or more intrinsic physical or behavioral 
characteristics [1]. Two types of authentication 
methods are distinguished in biometrics: identification 
and verification. Identification is based on comparing 
biometric measures of a person to the corresponding 
ones of enrolled individuals in the entire database (1:N 
problem). Verification only performs just one 
comparison to determine the degree of similarity 
between a test pattern and a reference model to 
determine if both correspond to the same individual 
(1:1 problem). The specific requirements of tolerance 
to imprecision and uncertainty, robustness, higher 
recognition rates and flexibility on biometric systems 
made that soft-computing is increasingly being used in 
biometric applications. The soft-biometrics paradigm 
[2] encourages the use of soft-computing for the 

development of biometric applications. In the context 
of biometric verification, the controlled variations in 
size, shape and orientation corresponding to patterns of 
the same individual, made the modeling and 
application of fuzzy logic a promising solution. 

Snakes [3] are energy-minimizing splines based on 
the analysis of the movement of a closed or open 
parametric contour over an image to which it tries 
iteratively to adjust. The internal or shape energy of 
the snake is related to various restrictions of elasticity 
and flexibility imposed on it. The external or image 
energy component is caused by the influence of some 
image features (i.e. intensity values of pixels, edges, 
corners, etc.) which guide the snake movements. The 
aim is to iteratively minimize the energy of the snake 
which is attracted to specific image features. Due to 
some known limitations of traditional snakes (i.e. 
initialization of the parametric curve in the image, 
selection of snake parameters, existence of local 
minima in the minimization function), different authors 
have proposed improved snakes algorithms [4][5]. 
Höwing et al. [6] first introduced a fuzzy snake 
algorithm that integrates uncertain a priori knowledge 
into the snake model, and the proposed active contour 
energy function was described by a set of fuzzy rules. 

In this paper we extend the fuzzy shape-memory 
snake model [7] that is suitable for shape analysis and 
verification.  We introduce a new external energy term 
on fuzzy shape-memory snakes: the difference between 
the angle of the tangent to the snake in a control point 
and the angle of the tangent to a specific stroke point 
(for all the strokes contained in the test biometric 
pattern). Experiments on two different biometric 
modalities (off-line signature and palmprint, 
respectively) applied to the verification problem have 
shown that the new approach improves classical crisp 
ones and our previous fuzzy proposals.  
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II. FUZZY SHAPE-MEMORY SNAKES 
This section summarizes the crisp and fuzzy 

(generic and specific) snake energy formulations as 
presented in [7] for shape-memory snakes.  

 
A. Crisp energy formulation 
 

The discrete formulation of the snake energy 
definition by Kass et al [3] is: 

 
Esnake(S) = Eimage(S) + Eshape(S)            (1)

       
where S represents the snake or deformable contour in 
2D (in our case, a polygonal open line), Eimage is the 
snake external energy that guides it towards the image 
and Eshape is the snake internal energy that specifies the 
restrictions on the snake shape. To reduce the effect of 
locality and excessive deformation on the snake, the 
internal energy term Eshape is defined. The internal 
energy Eimage need from the potential map M [8] of the 
NR×NC digital image I: M={mI(x,y)|1≤x≤NR ∧ 1≤y≤NC}, 
defined as the Euclidean distance in pixels from each 
point of the signature to the snake closest control point 
vi∈S (where i∈[1..NS] and NS represents the number 
of control points in the snake):  
 

Eimage(S) = Eimage(vi,M) = mI(vi-1)+mI(vi)+mI(vi+1) (2) 
 
Fig.1 shows the snake (the red color) adjustment on 

an ‘S’ shape using the potential map of this image. 
 

  
             (a)                        (b) 

Figure 1. Snake adjustment using the potential map of the image: (a) 
initialization and (b) convergence after 50 iterations. 

When snakes are used for a shape verification 
application, an excessive snake deformation is a 
problem. To avoid this effect, the snake “remembers” 
its original geometry (in particular, the relative 
proportions of snake segments and the angle between 
adjacent segments) during the iterative adjustment to 
the object boundary. Therefore, the term Eshape in (1) is 
expressed as: 
 

Eshape(S) = Eangle(S) + Eprop(S)  (3) 
 

where the term Eangle is used to maintain the angle 
between each pair of adjacent snake segments within 
the specified bounds of a controlled interval and Eprop 
is introduced to preserve the proportions between 
adjacent segments in S. Detailed formulations of  Eangle 
and Eprop are found in [7].  
 
B. Generic fuzzy energy formulation 
 

In the previous crisp snake model, it becomes 
difficult to adjust the parameters of the internal energy 
term Eshape. When a fuzzy shape-memory energy model 
is introduced, the adjustment is made in a more 
comprehensive way also producing a better 
experimental performance. We use a zero-order 
Takagi-Sugeno (TS) system [9] which is a rule-based 
model with trapezoidal fuzzy antecedents and crisp 
consequent values: 

(4) 
isnakekPiPkjijkii EETHENnisxANDANDnisxANDANDnisxIFR =−−   )~  ( ... )~  ( ... )~  ( : ,1,1,,,0,0
 

                    
where Ri denotes the i-th fuzzy rule for i=0..R-1 (R is 

the number of fuzzy rules), x = [x0,..,xP-1] is the input 
vector (P is the number of scalar variables), 

kjin ,,
~  

denotes the k-th antecedent fuzzy number (for k=0..K-
1, where K represents the index of fuzzy number) 
associated to the j-th variable in the i-th fuzzy rule, Ei 
is a constant snake energy output value for the i-th rule, 
and Esnake is the output crisp snake adjustment energy 
value of the MISO (Multiple Input Single Output) 
system. In general, we used fuzzy sets of trapezoidal 
shape defined by four vertex parameters which are 
experimentally adjusted. Although a Mamdani system 
would be equivalent and more intuitive to the used 
zero-order TS system, this last model is  in general 
better suited to mathematical analysis and also more 
computationally efficient (i.e. fuzzy controllers)  [9]. 

The system output computation Esnake can be 
reduced to:  
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where )(~
,, jkji xn  represents the degree of fulfilment of 

the fuzzy number kjin ,,
~  for the variable xj. In our TS 

model, to greatly simplify the corresponding 
computation, two membership functions, forming a 
partition of unity are defined, in each interval of every 
variable xx j ∈  : 

]~1,~[]~,~[~
0,,0,,1,,0,,,, jijijijikji nnnnn −=∈   

 (6) 
where:  0 ≤ i ≤ R-1 and  0 ≤ j ≤ P-1..  
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In the consequent of rules Ri for the considered zero-
order TS model, only two energy values Ei are 
considered: [E0, E1]=[ELow, EHigh]. Therefore, the fuzzy 
inference system (FIS) is composed by 2P rules, where 
P is the number of system input variables. 
 
C. Specific fuzzy energy formulation 
 

In particular, let ),,( pdv θ=  be the 3-tuple vector 
of input variables defining the snake adjustment energy 
Esnake. At each iteration t, this energy results from the 
contributions of the snake control points in the 
adjustment process. The input variables are: d 
representing the distance from any control snake point 
to the closest one in the test signature (obtained using 
the potential map M), θ  defining the variation of the 
angle formed by any three adjacent snake control 
points with respect to its initial position, and p that 
represents the variation of the proportions of two 
consecutive snake segments with respect to its initial 
proportions.  

The vector of membership functions vPU ~
of each 

input variable is:  
)~,~,~(~

pdv PUPUPUPU θ=   (7) 
where: )~,~(~),~,~(~),~,~(~

10101 ppPUPUddPU pod === θθθ
    (8)  

The subscript ‘0’ in the fuzzy sets represents the 
linguistic label ‘small’ and the subscript ‘1’ in the 
fuzzy sets represents the linguistic label ‘large’ (for 
distances, angle and proportion variations, 
respectively).  
 

In our specific signature verification problem, given 
the input vector ),,( pdv θ= , the proponed zero-order 
TS inference system has 23=8 fuzzy rules which define 
the snake adjustment energy Esnake:  

 
Lowsnake EETHENpispANDisANDdisdIFR =  )~  ( )~  ( )~  ( : 0000 θθ         (9) 

 
Highsnake EETHENpispANDisANDdisdIFR =  )~  ( )~  ( )~  ( : 0011 θθ

 …. 
 

Highsnake EETHENpispANDisANDdisdIFR =  )~  ( )~  ( )~  ( : 1117 θθ   

Using the energy expression Esnake of eq. (5) and 
due to the all considered fuzzy numbers for each input 
variable belong to a partition of unity, the final snake 
adjustment energy Esnake for the zero-order TS system 
in (9) can be simply computed as: 

=−+= HighLowsnake EEE )1( 00 αα           (10) 
HighpdLowpd EpdEpd )]()()(1[)]()()([

000000
~~~~~~ μθμμμθμμ θθ ⋅⋅−+⋅⋅=

  
where α0 is a real value in [0..1]. It is important to 
observe that the previous fuzzy formulation makes it 

possible to obtain discrete bounded snake energy 
values in a natural way. 

After the adjustment, a classification stage is 
required to determine the similarity between a test 
pattern and the reference snake. A set of features [7] 
extracted from the adjustment of the snake to the test 
pattern are used to train the considered classifier. 
 

III. IMPROVED FUZZY SHAPE-MEMORY SNAKES 
The snake models described in Section 2 have the 

property of approximately preserving its original 
shape. However, as a consequence of a not suitable 
snake initial placement and/or the presence of noise in 
the image, an incorrect snake adjustment on a shape 
can happen. This is illustrated by the example of Fig. 
2. The shape is composed by two crossing lines (with 
respective orientations of 0º and 60º), its associated 
image potential map is also created and the snake (in 
red) is placed on this image (see Fig. 2(a)). The snake 
segments have an approximate 0º orientation. As the 
snake control points are spatially closer to the 60º line 
using the fuzzy formulation, the snake reaches the 
incorrect final position presented in Fig 2(b) instead 
the desirable convergence position presented in Fig. 
2(c). 

 

 
  

     (a)           (b)          (c) 
Figure 2. Snake adjustment error: (a) snake initialization on potential 
map image, (b) incorrect final snake position after convergence and 

(c) desirable snake position. 

In order to achieve correct snake convergence 
results, we introduce a new external energy term Edγ on 
fuzzy shape-memory snakes: the difference between 
the angle of the tangent to the snake in a control point 
and the angle of the tangent to a specific stroke point 
(for all the strokes contained in the test biometric 
pattern). Therefore, the eq. (2) is modified to include 
the contribution of the tangent angle distance dγ 
between the snake control point vi∈S and the image 
line lj∈I (also considering the attached potential map). 
This distance dγ can be expressed as: 

(11) 
),,max(180),(min(min),(

, jiji
ji

ji lvlvIlSvlvd γγγγγγγ −+=
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      )),min(),max(
jiji lvlv γγγγ −       
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where 
ivγ and 

jlγ respectively represent the angle at 

the tangent of the snake control point vi and the angle 
at the tangent of the image line lj (it approximately 
corresponds  the point p with the longest segment 
passing through lj and contained in it). Fig. 3 illustrates 
the definition of the new tangent angle distance that 
consider the angle dimension (where d1 and d2 
respectively represent the new distances from the snake 
control point v to point p1 in line l1 and from v to point 
p2 in line l2). 
 

 
Figure 3. Graphical representation of the tangent angle distance. 

In consequence, the new specific fuzzy shape-
memory snake energy formulation (see Subsection 2.3) 
is described as follows. Let ),,,( γθ pdv =  now be the 
4-tuple vector of input variables defining the snake 
adjustment energy Esnake (where γ describes the tangent 
angle distance dγ). After fuzzyfing the inputs, the new 

vector of fuzzy partitions vPU ~
associated to each input 

variable (see eq (8)) is: 
 

 )~,~,~,~(~
γθ PUPUPUPUPU pdv =  (12) 

where the new variable γ also has an associated 
partition of unity: )~,~(~

10 γγγ =PU , where subscripts 
‘0’ and ‘1’ have a similar interpretation for variable γ 
as explained in Subsection 2.3.  

Therefore, the proponed zero-order TS inference 
system of eq. (9) has been slightly adapted, and it has 
now a total of 24=16 fuzzy rules which define the new 
snake adjustment energy E’snake in a similar form as 
expressed by the eq. (10): 

 
 
 
 

(13) 
     =−+= HighLowsnake EEE )1(' 00 αα                     
               +⋅⋅⋅= Lowpd Epd )]()()()([

0000
~~~~ γμμθμμ γθ

 
     

Highpd Epd )]()()()(1[
0000

~~~~ γμμθμμ γθ ⋅⋅⋅−  

 

IV. BIOMETRIC APPLICATIONS OF NEW FUZZY SNAKES 
This section presents two biometric verification 

applications of the new proposed fuzzy snakes. The 
first one corresponds to off-line signatures (behavioral 
biometrics) and the second one to palmprints 
verification (physiological biometrics). 

 
A. Off-line signature verification 
 

Automatic signature verification is a one-to-one 
pattern recognition problem where a test signature is 
compared with a reference signature to decide whether 
or not this test signature is genuine or it is a forgery.  
Handwritten signatures are usually considered as legal 
means for verifying a subject identity by financial and 
administrative institutions [1]. Signature verification 
can be classified in terms of the sensing technology as 
off-line and on-line. In the off-line approach, 
signatures are scanned from paper documents and in 
the on-line case, the signatures are captured using some 
electronic devices [1]. The off-line signature problem 
is more difficult than the corresponding on-line one 
since the signature to be verified is properly scanned 
time after the subject signed and none additional 
dynamic information from the act of signing is 
available (i.e. pen pressure, stroke sequence, speed and 
time, etc). A recent survey on the stages and involved 
techniques for automatic off-line signature verification 
is [10]. 

In our approach, the signature verification task is 
performed by a method [7] that can be decomposed in 
two main stages:  

1) Adjustment: an ad hoc created snake model 
(using only one signature per writer) is adjusted over 
the test signature image to be verified using the fuzzy 
shape-memory snake models presented in Sections 2 
and 3. 

2) Classification: the similarity degree between the 
test signature and the snake model is determined by a 
zero-order Takagi-Sugeno model. This fuzzy inference 
system (FIS) is trained using three discriminative 
features [7] (coincidence, distance and energy factors), 
which measure the degree of adjustment achieved in 
the previous stage. 
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B. Low-resolution palmprint verification  
 

The inner surface of the palm normally contains 
flexion creases, secondary creases and ridges [11].  
Palmprint verification compares an input pattern with a 
palmprint template by matching the input to the 
claimed identity template stored in a database [12]. If 
the dissimilarity between the input and the template is 
below a predefined threshold, the palmprint input is 
verified possessing same identity as the claimed one. 
Palmprint biometric employs either high or low 
resolution images [11]. The first ones are suitable for 
forensics applications and the second ones for access 
control applications. A digital scanner can usually be 
used for obtaining low resolution palmprint images 
(150 dpi or less). Due to the contact with the scanner 
the palm image is distorted and this makes more 
difficult the verification problem. Verification 
algorithms can be classified as line-based using edge 
detectors to extract palm lines, subspace-based using 
data dimensionality reduction techniques (like PCA or 
LDA) and statistic-based approaches in the spatial or in 
transformed domains. Kong et al [11] present an 
updated survey of palmprint recognition and 
verification techniques. 

In our approach the low-resolution palmprint 
verification task is performed using the same adapted 
two-stage verification method proposed for off-line 
signatures [7]. 

 

V. EXPERIMENTAL RESULTS 
We show some results for the two experimented 

biometric modalities. Figs. 4 and 5 respectively depict 
the corresponding snake adjustments for both off-line 
signature and palmprint verification patterns. Other 
possible biometric applications of our framework are 
IR hand vein [13] and retinal image [14] verification. 
In the off-line signature verification example, Fig. 4(a) 
shows a sample test signature image (and its attached 
potential map) and the corresponding snake model (an 
open and connected polygonal line where only the 
green points are those ones where the adjustment 
energy is computed) initially placed on the image. 
Snake initialization is performed by making coincident 
both mass centers of the test signature and the snake 
and also by proportionally rescaling the snake height 
with respect to the test signature. Figs. 4(b), 4(c) and 
4(d) respectively show the final adjustment detail for to 
the rightmost signature region corresponding to crisp 
model (Subsection 2.1), to the fuzzy model that 
considers only 2D spatial distances (Subsection 2.3) 
and to the improved fuzzy method where the tangent 
angle dimension is added (Section 3). To have a 
quantitative snake adjustment measure with respect to 

the test image (which provides us the verification 
criterion), two ratios were introduced in [7]: 
coincidence (fc) and distance (fd) values, respectively. 
Both ratios are normalized in the [0..1] interval and 
higher values of them mean a better adjustment result. 
Additionally, stroke fragments in red of Figs. 4(b) to 
4(d), represent the snake adjustment errors. The fc and 
fd values in signature verification problem for the snake 
models are shown in Table 1. 

 

Figure 4. Snake adjustments for the signature verification example. 

TABLE I. VALUES OF RATIOS ON THE SIGNATURE EXAMPLE FOR THE 
SNAKE MODELS 

Ratios fc fd 
Crisp snakes 0.76 0.65 
Fuzzy snakes 0.80 0.67 
Improved fuzzy snakes 0.82 0.75 

 
For the low-resolution palmprint verification 

example, Fig. 5(a) shows a sample test palmprint 
image where main lines have been painted in black 
color. The corresponding snake model (in green) is 
similarly built from these lines and properly placed on 
the test potential-map palmprint image to minimize the 
adjustment energy in a way like in the signature case. 
Figs. 5(b), 5(c) and 5(d) respectively show the final 
adjustment (magnified images) corresponding to the 
crisp snake model, to the fuzzy model considering 2D 
spatial distances, and to the improved fuzzy method 
where the tangent angle dimension is added. In a 
similar way, we use as snake adjustment measure the 
coincidence (fc) and distance (fd) ratios. In a similar 
way, the stroke fragments in red represent the snake 
adjustment errors. 

 
(a) 

(b) (c) (d)
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Figure 5. Snakes adjustments for the palmprint verification example. 

 
Table 2 shows the fc and fd values in the low-

resolution palmprint verification problem for the three 
snake models in the considered example. 

 

TABLE II. VALUES OF RATIOS ON THE PALMPRINT EXAMPLE FOR THE 
SNAKE MODELS 

Ratios fc fd 
Crisp snakes 0.94 0.78 
Fuzzy snakes 0.88 0.61 
Improved fuzzy snakes 0.96 0.79 

 

VI. CONCLUSION 
This paper presented an improved 3D fuzzy shape-

memory snake model that is suited to biometric 
patterns represented by a collection of variable-length 
interconnected lines. This approach was successfully 

compared to other crisp and fuzzy snakes for two 
different biometric modalities.  

As future work, we plan to apply our improved 
snake model to other verification biometrics (in 
particular, IR hand vein images and retinal images), 
and to other shape verification problems.  
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