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Abstract—Current methods for reconstructing biological
networks often learn either the topology of large networks
or the kinetic parameters of smaller networks with a well-
characterized topology. We have recently described a network
reconstruction algorithm, the Inferelator 1.0, that given a set
of genome-wide measurements as input, simultaneously learns
both topology and kinetic-parameters. Specifically, it learns a
system of ordinary differential equations (ODEs) that describe
the rate of change in transcription of each gene or gene-
cluster, as a function of environmental and transcription factors.
In order to scale to large networks, in Inferelator 1.0 we
have approximated the system of ODEs to be uncoupled,
and have solved each ODE using a one-step finite difference
approximation. Naturally, these approximations become crude
as the simulated time-interval increases.
Here we present, implement, and test a new Markov-Chain-

Monte-Carlo (MCMC) dynamical modeling method, Infere-
lator 2.0, that works in tandem with Inferelator 1.0 and
is designed to relax these approximations. We show results
for the prokaryote Halobacterium that demonstrate a marked
improvement in our predictive performance in modeling the
regulatory dynamics of the system over longer time-scales.

I. INTRODUCTION

Learning and characterizing regulatory networks respon-
sible for the remarkable ability of organisms to adapt to
changing environment is a key problem in modern biology
with applications spanning bioengineering, drug develop-
ment, and many other biological fields [1]. Transcriptional
regulatory networks (RNs) can be modeled as a system
of ordinary differential equations (ODEs), describing the
rate of change in mRNA concentrations as a function of
relevant predictors. We have recently described a network
reconstruction algorithm, the Inferelator 1.0 [2], which given:
1) a microarray compendium composed of time-series and
steady-state measurements, and 2) prior information, such
as lists of coregulated genes (gene-clusters) and putative
transcription factors (TFs), learns for each modeled entity—
a gene or a gene-cluster—the kinetic parameters in an ODE
model. Importantly, the resultant system of ODEs is sparse,
i.e. each modeled entity is regulated by only a few predictors
as expected from biological RNs.
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In order to scale to genome-wide networks we have made
two major simplifications in Inferelator 1.0. First, we have
assumed that the predictor levels are constant throughout
a time interval, which becomes a crude approximation as
the time-interval length increases. Second, we have solved
the system of ODEs as an uncoupled system, which is not
a realistic model for the underlying RN. In spite of these
simplifications we have recently shown that, at least for
prokaryotes, RNs learned using Inferelator 1.0 can explain
observed mRNA measurements (training-set), as well as
predict newly observed mRNA measurements (a large test-
set) [2], [3].
Here we focus on improving the long-time-scale dynami-

cal properties of the RN model from Bonneau et. al. [2], [3]
(all data used herein are also taken from this prior work).
Towards this goal we describe a new method, Inferelator 2.0,
that aim to remove or relax the aformentioned simplifications
by: 1) allowing predictors to time evolve throughout a time-
interval, and 2) solving the system of ODEs as a coupled
system. We use this new method to refine RN models result-
ing from Inferelator 1.0, and show significant improvement
in the predictive performance over longer time intervals.

II. PROBLEM SET UP
The dynamical variables available from microarray obser-

vations are the mRNA levels of genes,

x(t) = (x1(t), . . . , xM (t))T . (1)

The data set comes in the form of a M × K matrix of
observations

X =

0

BB@

x1(t1) x1(t2) · · · x1(tK)
x2(t1) x2(t2) · · · x2(tK)
...

...
. . .

...
xM (t1) xM (t2) · · · xM (tK)

1

CCA (2)

where (t1, t2, . . . , tK) are the observation times. Note that
X excludes steady state observations, which can be used by
Inferelator 1.0 and Inferelator 2.0, but are excluded from this
work to simplify our description of the method.
Without loss of generality, we can also assume that each

variable (i.e. each row in X) has been normalized such that
its time-average is 0 and its variance 1, i.e.

1
K

K∑

k=1

xi(tk) = 0,
1
K

K∑

k=1

x2
i (tk) = 1, i = 1, . . . , M. (3)

Typically it is desirable to compress the dimension of the
data-set (using biclustering or gene-clustering) by estimating
co-regulated or co-expressed gene groupings.

5448

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



To this end, we define y(t) = (y1(t), . . . , yN (t))T from
x(t), by setting:

yi(t) =
1

Mi

Mi∑

j=1

xij (t), i = 1, . . . , N (4)

where for each i, {i1, i2, . . . , iMi} ⊂{ 1, 2, . . . , M}. This
clustering amounts to a shift from genes (X) as the modeled-
unit to gene-groupings (Y ) as the modeled-unit, and leaves
us with a new (smaller) N × K matrix of observations Y .
We have previously used cMonkey [9], a bi-clustering

algorithm, to create Y , and have used it to evaluate Inferela-
tor 1.0 [2]. Here we have taken Y directly from [2], enabling
direct comparison of the two methods.

III. INFERELATOR 1.0
The Inferelator 1.0 [2] learns a sparse dynamical model

for each yi(t) as a function of x(t) by assuming that the
time evolution in the y’s is governed by the ODE:

dyi(t)
dt

= αiyi +
P∑

j=0

βi,jfj(x(t)), i = 1, . . . , N (5)

where αi < 0 is a prior for the degradation rate of y i,

β =

0

BB@

β1,0 β1,1 · · · β1,P

β2,0 β2,1 · · · β2,P

...
...

. . .
...

βN,0 βN,1 · · · βN,P

1

CCA (6)

is a set of parameters to be estimated, f0(x(t)) = 1 (i.e.
βi,0 is a bias term), and each of the other fj(x(t)) is
a single variable xi(t), or the minimum of two variables
min(xi(t), xi′ (t)).
Note that the matrix β is typically sparse, i.e. most

entries are 0, and that the summation term in (5) can fit
several types of biologically relevant interactions involving
two components (specifically AND, OR, and XOR logical
gates) [2].
Least Angle Regression (LARS) [4] is used to efficiently

implement an l1 constraint on β [11], which minimize the
following objective function, amounting to a least-square
estimate based on the ODE (5):

E(β) =
N∑

i=1

Ei(β) (7)

where

Ei(β)=
KX

n=1

˛̨
˛̨
˛
yi(tk+1) − yi(tk)

tk+1 − tk
+ αiyi −

PX

j=0

βi,jfj(x(tk))

˛̨
˛̨
˛

2

(8)

under an l1-norm penalty on regression coefficients,
P∑

j=1

|βi,j | ≤ s
P∑

j=0

|βolsi,j | (9)

where βols is the over-fit ordinary least-squares estimate
(i.e. the minimizer of (8) with no penalty), and s is a number
between 0 and 1 referred to as the shrinkage parameter;
setting s = 1 corresponds to ordinary least-square regression.

Cross Validation is used to select the value of s that results
in models with good generalization, i.e. good predictive
performance on new data. Each resulting model is then an
ODE describing the time evolution of y i.
Note that Inferelator 1.0 learns β but does not learn

the degradation rate αi, and that minimizing E(β) can
be done by minimizing the Ei(β) sequentially (each such
minimization gives a row in β).

IV. INFERELATOR 2.0

A. Bayesian Approach
To proceed further we note that (5) can be written as a

closed equation for the variables y’s alone, i.e.

dyi

dt
=

P∑

j=0

βi,jfj(y(t)), i = 1, . . . , N (10)

and that under this equation αi = βi,i.
We assume that the error between the observations y obsi (tk)

and the predicted yi(tk) can be modeled by a zero-mean mul-
tidimensional Gaussian variable. For simplicity, we assume
that this error depends on the variable y i but not on the
observation time, and that the errors on the different variables
in Y obs are uncorrelated (both assumptions are easy to relax
but make notations more cumbersome) i.e. we can write

yobsi (tk) = yi(tk) +
√

2ri ηi, (11)

where ηi are i.i.d. Gaussian variables with mean 0 and
variance 1, and 2ri > 0 is the variance of the error in
yobsi (tk). Under these assumptions, the probability of having
observed Y given β is

p(Y obs|β)= C−1 exp
“
− 1

2

NX

i=1

r−1
i

KX

k=1

|yobsi (tk)−yi(tk)|2
”

(12)

where C is a normalization constant. Notice that the de-
pendency of (12) on β arises through y i(tk), which is the
solution of (10) for a given set of β evaluated at time tk.
Using Bayes theorem, (12) can be rewritten to show the

probability of β given Y obs [5], [7]

p(β|Y obs) = C̄−1 exp
“
− 1

2

NX

i=1

r−1
i

KX

k=1

|yobsi (tk) − yi(tk)|2
”
p(β)

(13)
where C̄ is another normalization constant (independent of
β) and p(β) is a prior probability density on β.

B. Maximum likelihood approach
One natural first step is to find the most likely β, i.e. the

one which maximizes p(β|Y obs) [12]. Assuming that p(β)
is uniform in (12), this amounts to minimizing the objective
function

E(β) =
1
2

N∑

i=1

r−1
i

K∑

k=1

(yobsi (tk) − yi(tk))2 (14)

Here yi(tk) is the solution of (10) and E(β) depends on β
via this solution.
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Several efficient methods to minimize (14) (e.g. steepest
descent, conjugate gradient, etc. ) require the gradient of this
function with respect to β. This gradient is given by

∂E(β)
∂βi,j

=
N∑

i′=1

r−1
i′

K∑

k=1

(yi′(tk) − yobsi′ (tk))
∂yi′ (tk)
∂βi,j

(15)

For efficiency we calculate the partial ∂yi′ (tk)
∂βi,j

only for the
diagonal i′ = i. Denote by Z(tk) the N × P matrix with
entries zi,j(tk) = ∂yi(tk)/∂βi,j . Then (15) can be expressed
as

∂E(β)
∂βi,j

= r−1
i

K∑

k=1

(yi(tk) − yobsi (tk))zi,j(tk) (16)

and it is easy to see from (10) that Z satisfies

dzi,j

dt
= fj(y(t)) +

P∑

j′=0

βi,j′

N∑

i′=1

∂fj′(y(t))
∂yi

∂yi′

∂βi,j

(t) (17)

Again calculating the partial ∂yi′(tk)
∂βi,j

only for the diagonal
i′ = i, we can approximate (17) as

dzi,j

dt
= fj(y(t)) +

P∑

j′=0

βi,j′
∂fj′(y(t))

∂yi

zi,j(t) (18)

(10) and (18) form a closed system of coupled equations
which can be solved numerically using a fast ODE solver to
estimate the values of yi(tk) and zi,j(tk) in (16).
If the prior p(β) is nontrivial, its effect has to be incor-

porated in the objective function (14).

C. Full posterior sampling via importance sampling MCMC
The major issue with the maximum likelihood approach

discussed in IV-B is that the objective function (14) is non-
convex in general, i.e. there are many local minima besides
the global one. This means that the example minimization
procedure discussed in IV-B is likely to get trapped in local
minima of E(β). Thus, it is preferable to return to (13) and
proceed with an actual sampling of this posterior distribution
for β [5], [8].
The natural way to perform this sampling is to use

importance sampling Monte-Carlo to generate a sequence
{β1

i,j ,β
2
i,j ,β

3
i,j , . . .} whose equilibrium density is (13) [8].

A natural possibility is to generate this sequence via

βn+1
i,j = βn

i,j − h
∂E(βn)
∂βi,j

+
√

rih ξn
i,j (19)

where h > 0 plays the role of updating time step and
ξ1, ξ2, ... are M × (P + 1) matrices where entries ξn

i,j

are independent and identically distributed Gaussian random
variables with mean 0 and variance 1. Note that we take
advantage of the gradient ∂E(βn)

∂βi,j
to sample efficiently high

likelihood parameters. (19) is the Euler-Maruyama scheme
for the stochastic differential equation [6]

dβi,j(τ) = −∂E(βn)
∂βi,j

dτ +
√

ridWi,j(τ), (20)

Here τ is an artificial time, unrelated to t in (10) and (18),
andW (τ) is anM×(P+1)matrix whose entriesWi,j(τ) are
each a Wiener process (Brownian motion). The equilibrium
density of (20) is precisely (13). (19) samples (13) only
approximately (to O(h)), but it can be incorporated as
proposal step in in Metropolis-Hasting Monte-Carlo scheme
which samples (13) exactly. This scheme, with a uniform
prior was used to generate the results shown in figures 1 and
2. If the prior p(β) in (13) is nontrivial, it can be incorporated
in (19) in the same way as in IV-B.

D. Implementation

We have used Halobacterium time series microarray ob-
servations from [3], collecting all time intervals, [tk−k′ , tk],
with a sampling frequency smaller or equal to 60 minutes,
resulting in 335 time intervals. We have then randomly
separated these time intervals into two groups: A training
set with 224 time intervals, and a testing set with 111 time
intervals.
The Inferelator 1.0 ODEs, described in (5), use X as

explanatory variables for Y , i.e. use single TFs and TF-TF
interactions to explain the rate of change in mRNA levels
of gene groupings. In this work we have mapped TFs to
their best representative gene grouping (bicluster) to satisfy
the closed equation requirement imposed by (10), i.e. a
TF is mapped to the bicluster containing it with smallest
residual. The resulting data set, D, has 60 gene groupings,
representing 60 TFs, measured at the start and end points of
335 time intervals.
We have divided each time interval [tk−k′ , tk] into n

equally spaced sub-intervals, where n is a tunable parameter
that is currently fixed at five. For each time interval this
step resulted in two observed time points (beginning and
end) and n − 1 intermediate time points for which we
have no observation. We have used y i(tk−k′ ) = yobs

i (tk−k′ )
and zi,j(tk−k′ ) = 0 as initial conditions in (10) and (18),
respectively, and numerically solved the two equations to
get the values of yi and zi,j at the first intermediate time
point. We have then used these predicted values for y i and
zi,j as initial conditions to predict the next intermediate time
point; we have repeated this step until we have reached
yi(tk) to be used in (14) and zi,j(tk) to be used in (16). By
injecting these intermediate time points we allow predictors
to change throughout a time interval and better approximate
the coupled, continuous, dynamics of the system.
We have assumed that each yi has the same observation

error ri = 1 in (13), thus it has no effect on the maximum
likelihood estimator, i.e. the minimizer of (14), however it
may affect rate of convergence. To speed up the method we
have used stochastic gradient decent [10] as an estimate for
the more exact gradient given by (16). The setup described
herein lends itself to an efficient implementation, using iter-
ative matrix multiplication steps. MATLAB code is available
from the authors upon request.
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Fig. 1. Train and test set normalized sum-of-squares error as a function of
iteration number. For train and test set we have derived normalized errors
by dividing E(β) at iteration i = 1, . . . , 2500 by E(β) at iteration 1.
Error bars are drawn at one standard deviation.

V. RESULTS AND CONCLUSIONS

Figures 1 and 2, respectively, show that Inferelator 2
improves the overall performance of the RN model without
over fitting the train set, and that this improvement becomes
more significant for observations corresponding to longer
sampling intervals.
Learning biological RNs from systems data is a major

challenge in biology today. Two specific sub-challenges that
we have focused on in this paper are: 1) finding sim-
ple mathematical models capable of describing the more
complicated underlying biology, and 2) developing efficient
methods capable of effectively exploring the astronomical
search space of all possible networks. To address these two
sub-challenges we have described a two step approach for
network reconstruction.
Our results show that refining our original Inferelator 1.0

derived networks, via Inferelator 2, can significantly boost
our previously described ability to model dynamics, specif-
ically improving our ability to model longer time scales.
Thus, we propose a two-tiered strategy for network recon-
struction where: 1) networks (or ensembles of networks) are
constructed using our original approach (which efficiently
searches the large space of possible networks) and then
2) refined using our new method (Inferelator 2.0) which
balances the longer time-scale dynamic of the network
model. We have shown that this framework provides an
essential first step towards learning RNs where available data
often has longer sampling rates. This is the case in many
biological datasets where temporal sampling is constrained
by experimental feasibility and cost, and where interesting
biology occurs over longer time scales, such as the time
scales required to model cell differentiation.

length of time interval [min]

re
la

tiv
e 

er
ro

r

0 10 20 30 40 50 60

0
.4

.8
1.

2
1.

6

train set
test set

Fig. 2. Relative error as a function of time interval length. We have run
Inferelator 2.0 ten times using ten randomly created test and train sets, each
time keeping a record of the best learned model, β. We have then calculated
the relative error for each time interval. We have derived relative errors by
dividing the sum-of-squares error (

PN
i=1(y

obs
i (tk) − yi(tk))2) resulting

from Inferelator 2.0 by the equivalent sum-of-squares error resulting from
Inferelator 1.0. Box plots are shown for time-interval bins of [1, 5), [10, 20),
[20, 50) and [50, 60] minutes.
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