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Abstract— The prognosis of cancer patients suffering from
solid tumors significantly depends on the developmental stage
of the tumor. For cervix carcinoma the prognosis is better for
compact shapes than for diffusive shapes since the latter may
already indicate invasion, the stage in tumor progression that
precedes the formation of metastases. In this paper, we present
methods for describing and evaluating tumor objects and their
surfaces based on topological and geometric properties. For
geometry, statistics of the binary object’s distance transform are
used to evaluate the tumor’s invasion front. In addition, a simple
compactness measure is adapted to 3D images and presented
to compare different types of tumor samples. As a topological
measure, the Betti numbers are calculated of voxelized tumor
objects based on a medial axis transform. We further illustrate
how these geometric and topological properties can be used for
a quantitative comparison of histological material and single-
cell-based tumor growth simulations.

I. INTRODUCTION

In industrialized nations, malignant tumors are the second-

most frequent cause of death after cardiovascular diseases.

For the development of successful therapy strategies, a tho-

rough understanding of the biological mechanisms of tumor

growth is essential. Invasive cancer is the result of many

mutations. While in its direct precursor state, a tumor in-

situ is well separated from the surrounding tissue, cells of

an invasive cancer invade the surrounding tissue and secrete

angiogenesis factors that trigger the formation of new blood

vessels sprouting towards the tumor. There is some evidence

for correlation between the tumor’s morphology and its

malignity (e.g. [22], [4]), and for the proper choice of therapy

maximum knowledge about the tumor state is required.

Besides animal models and clinical studies, mathematical

models are increasingly used to analyze the possible mecha-

nisms leading to growth and invasion, and suggest possible

therapy strategies. The aim of this work is to establish

measures to distinguish tumor shapes and quantify shape

differences as a possible basis of clinical assessments and for

comparisons of tumor growth simulations with histological

data. We demonstrate our measures with tissue samples

and simulated (model) tumors. The effects of the model

parameters on the resulting morphology were examined and

characterized using different shape descriptors of geome-

try and topology. The applied geometric methods include
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statistics on distance values between the medial axis and

the object boundary, and compactness considerations to de-

fine morphological complexity. Additionally, we developed

topological methods to compute the Betti numbers on 3D

discretized binary objects.

II. RELATED WORK

Shape description is one of the major disciplines of image

processing. Topological shape descriptors, such as the Betti

numbers, are commonly used to describe isosurfaces of 3D

scalar fields [16].

Skeletons can be used for a large variety of tasks including

visualization improvement, animations, virtual navigation,

mesh generation etc. [7]. Skeletons can be computed via

continuous or discrete approaches [2]. In the continuous case,

the skeleton is approximated using the Voronoi graph of a

discrete sample set of the object boundary. Amenta et al.

[1] compute the medial axis from noisy point clouds to

reconstruct an object’s surface. The medial axis has been

used to represent shape in various works [2], [18], [13].

Kruszynski et al. use the medial axis to describe and quantify

coral structures. Many methods exist to compute the skeleton

in discrete environments, e.g. by morphological thinning

algorithms [15], [3], and by methods based on the distance

transform [19].

III. TUMOR GROWTH SIMULATIONS

For the simulated tumors we use a model in which each

cell is represented explicitly and parameterized by cell-

biological, cell-biophysical and cell-kinetic quantities [8].

In this approach, an isolated cell is modeled as elastic

homogeneous isotropic sphere of radius R, which slightly

flattens at the contact region if attached to another cell and

deforms into a dumb-bell with radius R and axis length a

during cell growth in small successive growth steps δa ≪
R. Cells can migrate and adhere, and consume nutrients

from the environment. The forces between adjacent cells are

modeled by the Johnson-Kendall-Roberts model for isotropic

homogeneous strongly adhesive spheres [12] that shows a

characteristic hysteresis behavior between the attachment

and detachment process [9]. The interaction force contains

information about the Young modulus E, the Poisson number

ν , and the density of adhesion molecules ρ . Cells are able

to grow and divide above a threshold nutrient concentration

if they are not compressed or deformed below a certain

threshold size. If the local nutrient concentration falls below

a defined threshold, cells die (necrosis) and are removed from

the simulations since in this case they fragmentize into small
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pieces. We model the migration of cells by the Metropolis

algorithm and a proper definition of time scales. A cell in

isolation performs a random-walk-like movement while in

the neighborhood of other cells it tends to move into the

direction which minimizes the free energy. We quantify the

migration activity of a cell by its diffusion constant D in

isolation. We perform a number of successive migration and

orientation trials between two successive growth trials. The

trials are accepted with probability min(1,exp{−∆V/FT}.

FT is a parameter that controls the cell activity: it may be

compared to the thermal energy kBT in fluids (kB: Boltzman

constant, T : temperature). Together with the choice of step

sizes for growth, orientation change, and migration, our

algorithm mimics a multi-cellular configuration changing

with time. The step sizes are chosen in such a way, that the

simulation reflects a realistic growth scenario. (The details

of our model are explained in [8])

We recently used this single-cell based model to study

tumor spheroid growth in liquid suspension [8], which has

been extensively studied experimentally [21], [14] (for an

overview of tumor growth models, please see Ref. [8] and

references therein). Here, we study growing tumors in a

tissue-like medium composed of cells to analyze the influ-

ence of an embedding medium on the tumor morphology

(for a simulation example, see Fig. 1)

Fig. 1. Typical simulated tumor growth scenario. Red: embedding
cells, white: cells of the expanding clone. The embedding cells are
initially placed on the nodes of a square lattice and subsequently
relaxed before the growth of the embedded clone is started.

The embedding medium was modeled as non-dividing

cells with the same parameters as the dividing cell clone

with the following exceptions: (1) ”motX” within the name

of the dataset denotes that D → D/X with D being the

Diffusion constant mentioned above, (2) except of the dataset

”id100_mot1_adh” the embedding cells do not adhere.

The id-value refers to the initial distance of embedding cells

which is l for id100 and l = 1.2 (= 120/100) for id120.

For selected parameter sets, we have validated that the results

do not change if we replace the embedding cells by granular

particles with the same physical properties, but with only

passive movement (i.e., no capability to migrate actively).

Experiments to validate our findings can thus be easily

conducted in in-vitro studies with an experimental setting

similar to that in Ref. [10] by growing tumor spheroids in a

granular embedding medium.

IV. GEOMETRIC SHAPE PROPERTIES

A. Morphological Operators

All datasets were given as binary 3D images, which are

generally defined as the quadruple P = (Z3,m,n,B), where

every element of Z
3 is a point (voxel) in P. The set B ⊆ Z

3

is the image foreground, or the object, whereas Z
3 \B is the

background. The neighborhood relation between the voxels

is given by m and n with m being the connectivity of object

voxels and n the connectivity of the background. To avoid

topological paradoxa, only the following combinations are

possible: (6,26), (26,6), (6,18) and (18,6) [15].

Morphological operators are well-known in image proces-

sing. Erosion and Dilation are in fact binary convolutions

with a mask describing the background-connectivity of a

voxel [11]. The Hit-Miss-Operator extracts specific features

of a binary image. For morphological Thinning, this operator

is used with a set of masks, where each mask is applied to

the original image, and all resulting images undergo a logical

OR-operation and will be subtracted from the original image

[15].

B. Distance Transform

The distance field of a binary digital image is a discrete

scalar field of the same size with the property, that each

value of the scalar field specifies the shortest distance of

the voxel to the boundary of the object. The signed distance

transform contains negative values for distances outside the

object. Distance transforms using the L1 or L∞ metrics can be

computed using Erosion for successive border generation and

labeling of the removed voxels until the object is completely

removed [11]. The computation of the Euclidean distance

transform is described in [19].

C. Medial Axis Transform and Skeletonization

In a continuous space, the medial axis of an object is the

set of points, which are the centers of maximally inscribed

spheres. A sphere is maximally inscribed, if it touches the

object boundary in at least two points, if it lies completely

within the object, and if there is no larger sphere with

the same properties. The skeleton of a binary object is a

compact representation of its geometry and shape. It is a

subset of the object with three properties [17]: (1) topological

equivalence, (2) thinness, and (3) central location within the

object. Topological equivalence implies that the medial axis

has the same number of connected components, enclosed

background regions and holes as the original object.

In discrete space, the medial axis can be approximated by

iterative Thinning as described in [15].

6272



D. Distance Histogram and Compactness

For quantifying the tumor surface as well as the geometry

of the medial axis, the object voxels of the medial axis

image were used as set of representatives for picking the

corresponding scalar values from the distance field. Based

on the definition of the medial axis in continuous space, the

histogram displays the distribution of the object’s inscribed

spheres’ radii as presented on the left hand side of Figures

4 and 8.

To obtain a different set of representatives, the distance

transform’s ridge lines [6] were computed and rasterized into

another binary image, which was again used to pick distance

field values for the histogram. Since ridge lines run along

local maxima and crests of a scalar field, the voxelized ridge

lines are voxels locally centered within the object, and are

therefore a similar representation as the medial axis in terms

of geometry.

We used the distance histogram of the medial axis to

compare different datasets with each other. The histogram’s

frequency values were interpreted as vector, and the L2-Norm

was computed between any two datasets to reveal similarities

based on the medial axis. A fixed histogram interval for all

datasets was applied. To avoid distortions due to different

scales, the simulated tumor objects were rasterized in such

a way, that the objects’ bounding boxes had approximately

the same dimensions.

For spheroid objects, such as the tumor growth simulation

data, a third type of histogram is presented: the distribution of

distances from the object’s barycenter to all boundary voxels

(Figure 5). The set of 26-connected boundary voxels of the

image G can be extracted using Erosion and set difference:

∂26G = G \ (G⊖M26) using the 3x3x3 mask M26, where

all voxels are 0 except the center voxel and its 6-connected

neighbors. For an Euclidean sphere, the histogram would

show only one bar at the sphere’s radius and a very small

deviation due to voxelization artifacts.

A further rather simple measure applied on the tumor

objects is the compactness as a normalized area/volume ratio

being C = A3

36πV 2 for 3D objects. For all bounded objects, it

is always C ≥ 1, and C = 1 for a Euclidean sphere. Though

simple, this measure has shown to be a good criterion

to evaluate the complexity of tumor surfaces. A different

description of compactness is given in [5], termed discrete

compactness: CD = AC
ACmax

, and was applied on histological

data in [4]. AC denotes the number of voxel contact surfaces

within the object consisting of n ≥ 2,n ∈ N, voxels, and

ACmax = 3(n − n(2/3)) being the theoretical maximum of

surface contacts on a given voxel number. According to this

measure, a cube has the discrete compactness CD = 1.

V. TOPOLOGICAL SHAPE PROPERTIES

The terms of Algebraic Topology used in the followi-

ng section are in detail explained in [20]. Topologically,

the medial axis transform is a retraction process, where a

three-dimensional simplicial complex is mapped to a two-

dimensional simplicial complex consisting of line segments

and triangles only. The k-th Betti number βk of a simplicial

complex K is the rank of its k-dimensional homology group:

βk := dimHk(K ) = dim
Ck(K )

Ik(K )
, k = 0,1,2, · · ·

where Ck(K ) is the kernel, and Ik(K ) is the image of the

boundary operator, that maps k-simplices to their (k − 1)-
chains. Ck(K ) is also termed the k-th cycle group, since its

elements are unbounded k-dimensional simplicial complexes

or k-cycles.

For a volume embedded in 3D, β0 is the number of

connected components, β1 is the number of independent

tunnels through the volume, and β2 is the number of voids

enclosed by the volume. The medial axis – topologically

representing the volume – is a two-dimensional simplicial

complex embedded in 3D space, therefore only the Betti

numbers βk with k ≤ 2 are non-zero. Betti numbers are

invariant among all simplicial complexes triangulating the

same topological space.

On our binary tumor images, β0 and β2 can easily be deter-

mined by flood fill operations on a 26-connected foreground

(β0), and on a 6-connected background (β2), respectively,

and counting the necessary operations. As for β1, further

processing of the voxelized medial axis is necessary. Once

the number of voids is determined, the corresponding en-

closing surfaces of the medial axis have to be ”punctured”

by removing any one object voxel, that separates two back-

ground components under the condition, that the number of

connected foreground components remains the same. Further

Thinning is applied to the medial axis until all surfaces are

collapsed and only line segments are left, resulting in a one-

dimensional simplicial complex. The voxel representation

is now converted into a skeleton graph according to [18].

We performed a depth-first-search on this graph to obtain

the number of independent cycles being β1 and minimized

this cycle base by linearly combining cycles and creating

elements with shorter path length. This is necessary for

characterizing individual cycles in terms of path length and

position within the object.

VI. RESULTS

A. Simulation Data

In the computer simulations, we varied the motility, the in-

itial density, and the adhesiveness of the embedding cells. All

simulated tumor samples were discretized on a 2563 voxel

grid with equally sized bounding boxes. We evaluated growth

simulation data of spheroid tumor models with 9 different

parameter configurations. Two datasets (asym_mot1 and

asym_mot20) developed in an anisotropic environment,

resulting in asymmetric tumors. Figures 2 and 3 show the

renderings of two simulated tumor objects (id120_mot1

and id100_mot30) with different growth behavior. The

id-value, id120 denotes that the initial cell density is

100/120 of the reference value id100, and the cell’s motility

mot-value, mot30 indicates a 30 times lower motility than

mot1. For Fig. 2 the cell population size was below the

critical size at which a necrotic core forms while for Fig. 3
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Fig. 2. Boundary of simulated tumor sample id120_mot1. The
bounding boxes of 30 random samples are shown.

Fig. 3. Boundary of simulated tumor sample id100_mot30. The inner
surface due to the necrotic core is shown.
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Fig. 4. Distance histograms of sample id120_mot1 and sample id100_mot30. L.h.s.: radii of the inscribed medial axis spheres; r.h.s.: ridge line points to
nearest boundary. The green bars indicate the interval with the sample’s average distance.
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Fig. 6. Boundary of cervix carcinoma specimen 11 (diffuse tumor
type). The bounding boxes of 30 random samples containing approx.
13% foreground voxels, are shown.

Fig. 7. Boundary of cervix carcinoma specimen 13 (compact tumor
type). The bounding boxes of 30 random samples containing approx.
27% foreground voxels, are shown. The object contains many small
cavities not visible in this representation.
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Fig. 8. Distance histograms of the two cervix carcinoma specimen. L.h.s.: radii of the inscribed medial axis spheres; r.h.s.: ridge line points to nearest
boundary. For specimen 11, the object consists of many small components, each with a separate medial axis, which is – in this case – very similar to the
discretized ridge lines. The mean distance values are shown.

TABLE I

RESULTS OF THE COMPACTNESS COMPUTATION AND TOPOLOGICAL ANALYSIS.

Average of 30 Samples Complete Object
Dataset Area Volume Compactness β0 β1 β2 Compactness β0 β1 β2

1. asym_mot1 15618.5 198596 0.85 0.9876 1.00 11.01 0.00 6.67 0.9929 1 176 0

2. asym_mot20 28815.9 192697 5.70 0.9717 1.07 33.03 0.00 60.41 0.9773 2 624 0

3. id095_mot1 27406.1 199477 4.57 0.9750 1.43 40.08 0.00 36.86 0.9809 6 468 0

4. id100_mot1 24598.7 190235 3.64 0.9766 1.33 35.39 0.00 28.55 0.9835 5 475 0

5. id100_mot10 33698.5 189090 9.46 0.9662 1.37 43.27 0.00 74.92 0.9723 5 475 0

6. id100_mot20 34658.0 185317 10.72 0.9647 1.07 40.03 0.00 100.39 0.9688 2 447 0

7. id100_mot30 46132.2 184418 25.53 0.9507 1.00 288.88 1.59 254.65 0.9564 1 2867 17

8. id100_mot1_adh 32872.8 195883 8.19 0.9680 1.03 101.50 0.00 66.16 0.9768 2 1301 0

9. id120_mot1 18581.0 200296 1.41 0.9844 1.00 24.27 0.00 10.76 0.9903 1 316 0

10. cerv11 (diffuse type) 89644.6 134022 354.66 0.8800 110.43 101.11 0.75 3337.46 0.8742 934 618 5

11. cerv13 (compact type) 55138.9 273947 19.75 0.9601 50.37 106.11 36.41 114.21 0.9758 334 1284 755

a necrotic core has formed. The corresponding histograms

in Figure 4 show the distance distribution from the medi-

al axis (l.h.s.) and ridge lines (r.h.s.) to the surface, and

the distances from the object’s barycenter to the surface

points, respectively (Figure 5). Besides a difference in the

distribution of the distances between medial axis and object

surface, the absolute distance values are significantly larger

for the tumor in Fig. 2 than for the tumor in Fig. 3. This

can be explained by more invasive finger-shaped patterns

in the latter case. The less complex the medial axis, the
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TABLE II

DISTANCE MATRIX OF THE MEDIAL AXIS HISTOGRAM’S PAIRWISE L2-NORMS.

1 2 3 4 5 6 7 8 9 10 11

1 - 0.1664 0.0459 0.0361 0.2122 0.2181 0.2810 0.1166 0.0351 0.5696 0.2067

2 0.1664 - 0.1582 0.1482 0.1149 0.1088 0.2138 0.1241 0.1618 0.5804 0.0976

3 0.0459 0.1582 - 0.0269 0.1883 0.1975 0.2547 0.0927 0.0477 0.5534 0.1998

4 0.0361 0.1482 0.0269 - 0.1883 0.1960 0.2579 0.0875 0.0320 0.5545 0.1931

5 0.2122 0.1149 0.1883 0.1883 - 0.0287 0.1030 0.1203 0.1974 0.5150 0.0873

6 0.2181 0.1088 0.1975 0.1960 0.0287 - 0.1129 0.1326 0.2044 0.5255 0.0694

7 0.2810 0.2138 0.2547 0.2579 0.1030 0.1129 - 0.1800 0.2604 0.4450 0.1601

8 0.1166 0.1241 0.0927 0.0875 0.1203 0.1326 0.1800 - 0.0927 0.4997 0.1460

9 0.0351 0.1618 0.0477 0.0320 0.1974 0.2044 0.2604 0.0927 - 0.5431 0.1967

10 0.5696 0.5804 0.5534 0.5545 0.5150 0.5255 0.4450 0.4997 0.5431 - 0.5516

11 0.2067 0.0976 0.1998 0.1931 0.0873 0.0694 0.1601 0.1460 0.1967 0.5516 -

smoother the corresponding histogram. The frequency of

small distance values is always higher due to the fanning-out

of the medial axis towards the object boundary resulting from

voxelization artifacts. The histogram depicting the distances

from the object’s barycenter to the boundary voxels (Fig.

5) suggests a connection between a complex surface and

a higher variance of the value distribution, which could be

confirmed by fitting a Gaussian Distribution to the data in the

case id120_mot1 and a weighted sum of two Gaussians

in the case id100_mot30. The variance σ2 = 24.21 in the

first case is approximately one fifth of the two variance values

σ2
1 = 138.9,σ2

2 = 121.8 in the latter. On the right hand side

of Figure 5, a second maximum at small values indicates the

necrotic core’s surface close to the center of the object.

Table II shows the pairwise Euclidean distances between

the medial axis histograms. The lower left half of the

symmetric matrix visualizes the similarity values as gray

boxes with black indicating the smallest, and white indicating

the largest distance. The three most similar dataset pairs are

highlighted in bold.

Table I presents the results of the compactness com-

putation and topological analysis. Four simulated datasets

have been compared regarding different motility properties

(mot= 1,10,20,30), and three datasets regarding different

cell densities (initial cell distance: id=95,100,120). One

tumor object (id100_mot1_adh) developed in an envi-

ronment with modified embedding cell adhesion properties,

resulting in a more complex morphology as suggested by

the topological results (β1) and the compactness values

shown in Table I. The first seven columns depict average

values over 30 random samples containing approximately

the same amount of foreground voxels (20± 5%). The last

five columns show the results of the complete object. There

are two compactness measures shown, the first being the

normalized continuous surface/volume ratio with a minimum

of 1 for a maximally compact object (sphere), whereas

the second is the described discrete compactness with a

maximum of 1 for the cube. Hence, a large first and small

second value both indicate an increasing invasive structure.

Note, that there is a compactness value of 0.85 in the first

row, which would be impossible according to the above

definition. The sample generation introduced ”fake” surfaces,

which were not taken into account. This is also the reason,

why the first compactness value is generally smaller for

the samples than for the complete objects. The compactness

measures indicate a decreasing compactness with decreasing

motility, increasing initial density of the embedding cells, and

if cell-cell adhesion between the embedding cells is present.

This is physically plausible. A decreasing motility inhibits a

uniform spread of the tumor which would require a uniform

outward displacement of the embedding cells. Instead, the

expanding tumor sprouts into regions where the local density

of embedding cells is smaller and form invasive fingers. With

increasing density, the embedding cells are more difficult to

displace and it is more favorable for the expanding cell clone

to sprout into the spaces resulting from inhomogeneities of

the spatial distribution of the embedding cells. If embedding

cells are adherent they form locally dense aggregates which

are difficult to push aside such that the expanding cell clone

again sprouts into the space between those aggregates. Note

that the Betti number β2 shows the same tendencies as

the first compactness measure, while the Betti number β1

is insensitive to the interface pattern between tumor and

surrounding medium. The Betti number β2 proves useful

to identify cavities. It is non-zero only for id100_mot30,

where a hollow core emerged as a consequence of necrosis.

Hence, β2 and the distance between barycenter and surface

are both suited to identify large cavities.

In summary, the geometric and topological measures permit

an excellent quantification of the invasiveness of the simula-

ted tumors and are in perfect agreement with the biophysical

intuition.

B. Histological tumor material

For comparison of our results from the simulation data,

we additionally evaluated two datasets obtained from a 3D

reconstruction of a series of histological slice images from

cervix carcinoma [4] (Figures 6 and 7). The specimen

represent two different types of in-vivo tumor growth: diffuse

and compact. The diffuse type consisted of approximately

1.2 million cells, was about 4.1 mm x 2.9 mm x 1.5 mm
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in size, and was discretized on a 414 x 291 x 153 voxel

grid. The compact type had about 4.6 million cells with a

size of 3.1 mm x 2.9 mm x 1.3 mm and was presented on a

grid of 311 x 291 x 127 voxels. Although the morphology

of the compact type seems to be much simpler than the one

of the diffuse type, the Betti numbers β1 and β2 suggest a

high complexity, invisible in the 3D rendering of the object

(Figure 7).

The histological datasets do not represent the complete

tumor. Instead, they show only a portion, and artificial

surfaces were introduced. To avoid biased results caused by

those surfaces, 30 cuboid sections containing the surface

or region of interest were extracted, evaluated, and the

averaged results were compared with the average of 30

random cuboid samples extracted from the simulation data.

To determine the samples’ positions, for each voxel position

the foreground/background ratio was computed given the

chosen sample size (100 x 100 x 100 voxels). Among the

positions with ratio values falling into the desired interval

(13±5% for the diffuse type, 27±5% for the compact type),

30 positions were randomly chosen to extract the samples.

As for the diffuse tumor type (cerv11), according to the

histogram shown in Figure 8, the medial axis is very similar

to the discretized ridge lines. This can be explained by the

object’s morphology, suggested by β0. The object consists

of many small components, each with a separate medial axis

with, in this case, the same properties as ridge lines.

VII. CONCLUSIONS AND FUTURE WORKS

We have adapted and tested different techniques to eva-

luate and quantify the morphology of tumor objects. We

compared growth simulations with different parameter confi-

gurations with each other, and adapted the described methods

for evaluating in-vivo tumor objects as well. The obvious

differences in complexity observed in the 3D renderings

of the object surfaces could be confirmed and quantified

with the methods described. Though sensitive to noise at

the object’s boundary, the medial axis has proven to be

suitable for representing the dataset’s shape and geometry.

In summary, the used geometric and topological measures

proved useful to quantify rough boundaries and infiltration

pattern of tumors indicating invasive behavior. In a next

step, we will apply different methods for shape description,

such as principal component and momentum analysis. As

additional histological and simulated datasets are available,

the presented methods will be statistically analyzed in more

detail to establish classification methods of tumor growth

behavior. Comparing the distance histograms by means of

interpreting them as vectors and computing the pairwise L2-

Norm, similarities between different tumor shapes could be

identified. The presented distance matrix suggests a method

for clustering the datasets based on the similarity of their

medial axes. Moreover the time development of the measures

during the growth of a tumor will be studied.
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