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Abstract—The fast pace of development of upper-limb
prostheses requires a paradigm shift in EMG-based controls.
Traditional control schemes are only capable of providing 2
degrees of freedom, which is insufficient for dexterous control of
individual fingers. We present a framework where myoelectric
signals from natural hand and finger movements can be
decoded with a high accuracy. 32 surface-EMG electrodes
were placed on the forearm of an able-bodied subject while
performing individual finger movements. Using time-domain
feature extraction methods as inputs to a neural network
classifier, we show that 12 individuated flexion and extension
movements of the fingers can be decoded with an accuracy
higher than 98%. To our knowledge, this is the first instance
in which such movements have been successfully decoded using
surface-EMG. These preliminary findings provide a framework
that will allow the results to be extended to non-invasive control
of the next generation of upper-limb prostheses for amputees.

I. INTRODUCTION

According to the National Institutes of Health (NIH), there
are approximately 1.9 million people living with limb loss in
the United States. It is estimated that there are 50,000 new
amputations every year and a quarter of them are from the
upper limb. Partial hand amputation, with loss of 1 or more
fingers, is the most prevalent upper limb amputation. Since
hand and finger dexterity requires muscles in the forearm
and since ∼70% of all upper limb amputations are distal to
the elbow [1], [2], this makes the case for the development
of hand prostheses with a high degree of dexterity.

However, most of the current commercially available pros-
theses that help overcome the loss of a limb use surface
myoelectric signals (MES) signals to control a very limited
number of degrees of freedom (DOF) (< 3) [3], [4]. New
breakthroughs and developments in the next generation of
high dexterity prosthetic arms have made this control insuf-
ficient. Prosthetic hands like the Utah/MIT dexterous hand,
Shadow dexterous hand, Cyberhand, DLR-HIT hand or the
Fluid hand with more than 16 DOF’s offer a higher degree
of control (see [5] for a summary of many prosthetic hands
under development). While these prosthetic devices are not
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far from market, no noninvasive-EMG control system offers
the high level of control required by the devices [6].

Some groups have demonstrated that a higher dexterity
EMG-based control could be achieved using different com-
binations of extracted features and classification methods [7],
[8], [9], [10], [11]. Better results have been shown using inva-
sive EMG electrodes [12]. Although this procedure seems to
be the future for controlling the next generation of prosthetic
arms, the current-state-of the-art is still in its clinical testing
phase, is invasive, subject to ethical considerations, and the
long term effect of the implants is still being researched [14],
[15]. Jiang et al. [13] have shown end-point control of three
fingers using features from the wavelet transform of the EMG
signals.

This paper aims at closing this control gap to ultimately
enable individual finger movements on the next generation
of prostheses. We present surface EMG data collected from
32 bipolar electrodes placed mainly on an able-bodied indi-
vidual’s forearm performing 10 individual finger movements
and 2 movements of grouped fingers. Using traditional signal
analysis tools we show that it is possible to achieve very high
accuracy (> 98%).

II. METHODS

A. Data Acquisition

EMG data was acquired using a Compumedics (El Paso,
TX, USA) Neuroscan SynAmps2 64-channel amplifier. The
amplifier was connected to a PC for data storage. Auditory
and visual, animated cues were presented on a computer
screen and used for synchronization with the data. Sampling
was performed at 2000 Hz and bandpass filtered between
DC and 500 Hz.

Before electrode placement, the arm was cleaned with a
Nuprep abrasive skin preparation gel from D.O. Weaver &
Co., Aurora, CO, USA. The subject’s arm was also shaved
to avoid high impedances in the signals.

Afterwards an EMG array of 32 bipolar Ag/AgCl elec-
trodes from Myotronics-Noromed (Tukwila, WA, USA) was
placed on the arm following SENIAM recommendations
[16], two Cleartrace LT reference electrodes from ConMed
Corporation (Utica, NY, USA) were used as reference and
ground. A reference electrode was placed on the distal part
of the olecranon and the ground electrode was placed on the
clavicle.
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Fig. 1. Experimental setup. Top: A subject performing a trial (index
extension). Bottom: Approximate location of electrodes, superimposed on
Netter’s pictorials [17]

B. Experimental Setup

An array of 32 bipolar EMG electrodes was placed on the
subject’s arm following physical landmarks, as depicted in
Fig. 1b. Experiments were performed following Johns Hop-
kins Institutional Review Board (IRB) approval. The subject
was seated in front of a 50” screen, his primary arm resting
his elbow and wrist on two separate compliant surfaces to
avoid artifacts generated by contact between electrodes and
the resting surfaces. The arm was bent to form a 90◦ angle.
Twelve different movements were executed by the subject in
response to a visual animation on the screen and auditory
cue that depicted the movement to be reproduced. The
movements consisted of flexions and extensions of all the
fingers individually and of the middle, ring and little finger
as a group (MRP group). The movements were denominated
e1, e2,..., e5, e345, f1, f2,..., f345, where e1 is extension of
the thumb, and f345 is flexion of the 3 fingers as a group.
Each movement was presented in a random sequence and
repeated 30 times in 3 blocks of 10, with a resting period of
2 to 5 minutes between each block, to avoid fatigue. Each
individual trial lasted between 5 s and 7 s. Upon presentation
of the cue, the subject was asked to flex or extend a specific
finger or group of fingers and then keep the position for 3 s
when a rest cue was provided, lasting between 2 s and 4 s
between each trial, again, to minimize fatigue. The structure
of an individual trial is shown in Fig. 2.
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Fig. 2. Timing diagram for experimental trials
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Fig. 3. Filtered EMG data for a single trial from a single electrode (top);
Willison Amplitude of EMG signal (bottom). The cue is presented at the 1
s mark. Data used for training is the 2 s time interval that begins 0.5 s after
the cue.

C. Signal Processing

The EMG data was bandpass filtered with a low cutoff
frequency of 10Hz and a high cutoff frequency of 500 Hz as
recommended by the Surface EMG for Non-Invasive Assess-
ment of Muscles [16] protocol. The signals were acquired
using a 64 unipolar channel amplifier and subsequently bipo-
larized subtracting the channels that correspond to the same
electrode. The thirty trials were reorganized by concatenating
all the same movements. The Principal Component (PC)
for each movement type was extracted and used to detect
eventual erroneous movements, i.e. if the subject performed
a movement different from the one indicated by the visual
cue. We found that this technique highlights differences
between the different trials for the same movement and
allows immediate identification of erroneous trials. While
operator errors are a practical reality of these experiments,
it brings no advantage to use them in training the neural
network classifier. Therefore, after localizing these potential
errors, visual inspection of the raw data was performed to
ultimately reject the trials containing such errors from the
training set.

D. Feature Extraction

From the raw EMG data, four frequently used time-domain
EMG features were extracted [6].

Different attributes and information can be gathered from
a variety of time domain features. The four that were chosen
in this study were the 1) Mean of the absolute value; 2)
Willison Amplitude; 3) Variance; 4) Waveform length.

1) Mean of the absolute value (X): this feature displays
a large increase in value at onset and maintains fairly high
values during contraction.

2) Willison Amplitude (W): if xi are the individual EMG
data, then
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W =
N∑

i=1

f(|xi − xi−1|) (1)

where

f(x) =
{

1 if x > threshold
0 otherwise

(2)

The Willison Amplitude for a given interval represents
the number of times that the magnitude of the difference for
every two consecutive points exceeds a certain threshold. Its
value correlates to muscle contraction levels [6]. An example
of this feature is shown in Fig. 3 (bottom).

3) Variance (S2): this parameter is a representation of the
EMG signal power, helping to identify onset and contraction.

4) Waveform Length (WL)

WL =
N∑

i=1

|xi − xi−1| (3)

The waveform length of the signal provides indicators for
signal amplitude and frequency.

Additionally, the data was weighted by three trapezoidal
windows, to achieve a more stable energy distribution for
feature extraction, as described by Du et al. [18]. Briefly,
a feature is extracted for each of the three windows. The
resulting three features are then summed to obtain one final
value of the feature of the 200 ms window. The length of the
window was chosen to simultaneously minimize the delay
between performed and decoded action while providing
sufficient data for a valid feature to be extracted. Each
window was shifted by 25 ms, thereby overlapping adjacent
windows. This allows reasonable continuity in the extracted
feature.

With reference to Fig. 3, the features actually extracted
belonged to the two second interval that begins 0.5 s follow-
ing the cue, which implies that each trial is characterized by
80 features, i.e. 2000 ms / 25 ms. This was done to account
for delays in reaction time and to ensure that the muscles
activated to perform the movement were contracted.

E. Classification

The extracted features were transformed in a Principal
Component space (performing a discrete Karhunen-Love
transform) to linearly separate them. Non-linear decoding
filters were designed using multilayer, feed-forward Artificial
Neural Networks (ANNs) because of their use in non-
linear regression and classification [19]. By using a tan-
sigmoid transfer function for the hidden layer neurons and
a log-sigmoid for the output layer, the network assigns a
probability to each movement, P{Mi}, where i = 1, ..., 12,
corresponding to the 10 individuated movements types and
the MRP group movements and output the movement type
with the highest probability. The neural network was trained
using Matlab’s scaled conjugate gradient descent algorithm
in combination with early validation to improve generaliza-
tion.
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Fig. 4. Plot of actual decoded outputs for the 12 movement types using two
of the features described in the text. The Feature Datapoints shown in the
abscissa are the features for each 25 ms increment of the data window. The
“steps” shown in the plots are the correct movements for that time interval.
When a vertical red bar appears on a step, this represents a misclassification.

III. RESULTS AND DISCUSSION

The decoding accuracy of the individual and the group
movements was evaluated using each of the features de-
scribed in the previous section individually. The decoding
of all the features was characterized by high accuracies, on
average ≥98% for all the features. Fig. 4 shows two classifi-
cation outputs using variance (top) and Willison Amplitude
(bottom) as extracted features. Fig. 5 presents the confusion
matrices obtained for the same two features, and both with
60 neurons in the hidden layer. From close examination of
the figure, it shows that while the overall accuracy of the
movement decoding is almost perfect, two movements were
not as good as the rest, and the two movements coincide
for both features: the extension of the combined finger
movements and the flexion of the little finger.

To elaborate, these plots give us a better understanding
of potential sources of confusion between movements. For
example, e1 and f1 movements are confused, albeit scarcely.
This could be due to the fact that the movement of a
finger is made up of a group of submovements involving
different muscle groups [20]. In this case, it seems that these
subcontractions are similar.

Furthermore, it is interesting to note a different type of
confusion. This arises between the movement of the group
of three fingers and the same movement of one of the three
fingers that make up the group. Specifically, the extension
of the middle finger with the extension of the group (e3 vs.
e345) and the flexion of little finger with the flexion of the
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group (f5 vs f345). This is probably a consequence of the
nature of the movement itself, since the group movement is
made up of the movement of the three individual fingers.
One way to improve this type of confusion is possibly to
apply a different decoding scheme in the neural network.
This would consist in reducing the number of neurons in the
output layer by removing the two output neurons associated
with the group movements and replace them with a new
probability associated with the movement of the three fingers
together. Future work on this will explore this possibility.

IV. CONCLUSION

This work is a significant but still preliminary step towards
the development of dexterous control of individual and
groups of fingers in a prosthetic hand. Since all the record-
ings were taken proximally to the wrist, this holds great
potential for achieving similar results with subjects who have
withstood amputations distal to the elbow. However, fatigue
and muscle atrophy associated with an amputation might
result in significant differences in patterns from healthy
individuals. With this in mind, data has recently been col-
lected from a transradial amputee performing the same tasks
and a detailed examination of the differences between an
able-bodied person and a transradial amputee during finger
movements will be undertaken. Furthermore, a reduction in
the number of electrodes, without compromising accuracy,
would significantly simplify the requirements for controlling
the next generation of prostheses. Principal and Independent
Component Analysis (PCA, ICA), for example, can help
identify and remove electrodes which do not contribute
enough information.

REFERENCES

[1] T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie. Limb ampu-
tation and limb deficiency: epidemiology and recent trends in
the United States. South Med J, 95(8); 2002.

[2] R. F. Weir, E. C. Grahn. Development of Externally-powered
prostheses for persons with partial hand amputation. Proc.
IEEE EMBS International Conference, 2000.

[3] V. S. Nelson, K. M. Flood, P. R. Bryant, M. E. Huang,
P. F. Pasquina, T. L. Roberts. Limb deficiency and prosthetic
management. 1. Decision making in prosthetic prescription and
management. Archives of Physical Medicine and Rehabilita-
tion, 87: S3-9, 2006.

[4] R. A. Roeschlein, E. Domholdt. Factors related to success-
ful upper extremity prosthetic use, Prosthetics and Orthotics
International, 13:14-8, 1989.

[5] http://www.shadowrobot.com/hand
[6] M. Zecca, S. Micera, M.C. Carrozza and P. Dario. Control

of Multifunctional Prosthetic Hands by Processing the Elec-
tromyographic Signal. Critical Review in Biomedical Engi-
neering, 30(4-6):459-485, 2002.

[7] K. Englehart, B. Hudgins. A robust, real time control scheme
for multifunction myoelectric control. IEEE Trans. Biomedical
Engineering, 50(7):848- 854, 2003.

[8] K. R. Wheeler, M. H. Chang and K. H. Knuth. Gesture-Based
Control and EMG Decomposition. IEEE Tans. on Systems,
Man, and Cybernetics, 36(4), July 2006.

[9] K. A. Farry, I. D. Walker and R. G. Baraniuk, ”Myoelectric
teleoperation of a complex robotic hand,” Proc. IEEE Int. Conf.
Robotics and Automation, 12(5):775:788, 1996.

Variance

Willison Amplitude

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e1

e2

e4

e345

f2

f4

f345

e3

e5

f1

f3

f5

e1 e2 e4 e345 f2 f4 f345e3 e5 f1 f3 f5

e1

e2

e4

e345

f2

f4

f345

e3

e5

f1

f3

f5

e1 e2 e4 e345 f2 f4 f345e3 e5 f1 f3 f5

Fig. 5. Confusion matrices of data classified using the variance of the raw
EMG signal (top) and the Willison Amplitude(bottom) as features, for the
12 movement types.

[10] G.Wang, Z.Wang, W. Chen and Zhuang. Classification of
Surface EMG signals using optimal wavelet packet method
based on Davies-Bouldin criterion. Medical and Biological
Engineering and Computing 44:865-872, 2006.

[11] D. Peleg, E. Braiman, E. Yom-Tov, G. F. Inbar. Classification
of Finger Activation for Use in a Robotic Prosthesis Arm.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 10(4), December 2002.

[12] T. R. Farrel and R. F. Weir. Pilot Comparison of Surface vs.
Implanted EMG for Mutifunctional Prosthesis Control. IEEE
9th Int. Conf. on Rehab. Robotics, 2005.

[13] M. W. Jiang, R. C. Wang, J. Z. Wang, D. W. Jin. A Method
of Recognizing Finger Motion Using Wavelet Transform of
Surface EMG Signal. IEEE-Engineering in Medicine and
Biology Society, 2005.

[14] S. Rodot, R. Capurro. Ethical aspects of ICT implants in the
human body. European Group on Ethics in Science and new
technologies to the European Commission. Opinion, No 20,
March 2005.

[15] E. C. Leuthardt, G. Schalk, D. Moran, J. G. Ojemann. The
Emerging World of Motor Neuroprosthetics: A Neurosurgical
Perspective. Neurosurgery, 59(1):1-14, 2006.

[16] J. H. Blok, D. F. Stegeman. Simulated bipolar SEMG char-
acteristics. Hermens HJ, Freriks B, editors. SENIAM 5: The
state of the art on sensors and sensor placement procedures
for surface electromyography: a proposal for sensor placement
procedures, ISBN 90-75452-09-8, 1997.

[17] F. H. Netter. Atlas of Human Anatomy. Saunders. IV edition.
[18] S. Du, M. Vuskovic. Temporal vs. spectral approach to feature

extraction from prehensile EMG signals. IEEE Information
Reuse and Integration, 2004.

[19] S. Haykin. Neural Networks: A comprehensive foundation
(2nd Edition. Prentice Hall, 1999.

[20] W. G. Darling, K. J. Cole. Muscle activation patterns and
kinetics of human index finger movements. J Neurophysiol
63:10981108, 1990.

6148


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

