
Abstract—A new method for indirect identification of 
Sleep Apnea patients through snoring characteristics is 
proposed. The method uses a logistic regression model 
which is fed with several time and frequency parameters 
from snores and their variability. The information is 
contained in all the snores automatically detected in 
nocturnal sound recordings. In the validation of the 
model, subjects are classified with a sensitivity higher 
than 93% and a specificity between 73% and 88% when 
all detected snores are used. The model can also be 
adjusted to obtain 100% specificity with a corresponding 
sensitivity between 70% and 87%. This results are better 
than previous reported methods based on snoring 
analysis, but with a single channel, and are comparable 
to the classification scores of several portable apnea 
monitors when evaluated on a similar number of 
patients. This technique is a promising tool for the 
screening of snorers, allowing snorers with a low Apnea-
Hypopnea Index (AHI<10) to avoid a full-night 
polysomnographic study at the hospital. 

I. INTRODUCTION  
ECENTLY, several studies concerning to 
prevalence of snoring and sleep apnea have been 

published. In Spain, 64% of men and 36% of women are  
snorers and the probability of Obstructive Sleep Apnea 
Syndrome (OSAS) is 3.2 times higher in snorers than in 
non-snorers [1]. The OSAS has important clinical 
implications, ranging from disruption of sleep with daytime 
sequelae of excessive sleepiness to suspected cardiovascular 
consequences in the long term [2].  

The nocturnal polysomnography (PSG) and subsequent 
manual analysis is considered to be the gold standard for the 
diagnosis of OSAS. The procedure of a PSG, which requires 
the subject to spend one night at the hospital, is labor 
intensive and time consuming, and has a limited capacity 
considering the high prevalence of OSAS. Many alternative 
methods to assess OSAS have been developed, most of them 
incorporated in portable devices, that use the traqueal sound 
as their main signal. The diagnostic accuracy of such 
methods has been reported to be very low when only one 
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parameter from the tracheal sound was employed. Therefore, 
most of these methods utilize complementary parameters 
from other cardiorespiratory signals to detect abnormal 
breathing events [3]. Type 2 monitors record at least seven 
channels, including EEG, EOG, submental EMG, ECG or 
HR, air flow, respiratory effort and SaO2. Type 3 monitors 
record at least four channels, including ventilation or 
airflow, ECG or HR and SaO2. And Type 4 monitors use at 
least one respiratory channel, usually either oxygen 
saturation or airflow [4]. 

Our main hypothesis is that Sleep Apnea patients, as 
defined by an AHI≥10, can be detected through the 
information extracted from the snores of a subject, without 
the need to detect the Apneas/Hypopneas or to focus on 
post-apneic snores. A method in this direction has been 
recently proposed which is based on the pitch of snores. The 
authors identify Sleep Apnea patients (AHI≥10) through one 
snoring pitch parameter with a maximum sensitivity of 91% 
at 67% specificity in a database with 29 patients. To obtain 
specificity values higher than 85%, their sensitivity always 
stays below 50% [5]. In this work, we propose and validate a 
classification model based on logistic regression, which 
incorporates snore parameters derived from previously 
developed analysis techniques in time and frequency 
domains [7-9].  
 

II. MATERIAL AND METHODS 

A. Signal Acquisition 
Respiratory sound was recorded simultaneously with PSG 
studies. The sound sensor was a unidirectional electret 
condenser microphone, coupled to the skin through a conical 
air cavity, which was placed laterally on the trachea at the 
level of the cricoid’s cartilage using an elastic band. The sound 
signal was amplified and filtered using a second order 
Butterworth pass-band filter between 70 and 2000 Hz and then 
digitized with a sampling frequency of 5000 Hz and a 12 bit 
A/D converter. The position of the patient was simultaneously 
captured and digitized through an abdominal sensor.  

   B. Patient Database and  Snore characterization 
An automatic snoring detector previously validated was 

used to identify snoring episodes and to reject cough, voice 
and other artifacts [6]. The number of detected snores and the 
patients database is shown in Table I.  

Let s(i) be the i’th detected snore and ts(i) its occurrence 
instant. By means of the time difference  dTs(i) = ts(i) – ts(i-1) a 
subgroup of snores G1 is defined as follows:  
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In this subgroup, the first and second snores after an 
apnea (post-apneic snores) are excluded. The snores in 
group G1 will also be called regular snores. 

Several techniques in time and frequency domains have 
been developed in our previous studies for the analysis and 
characterization of snores. In the time domain, snores are 
characterized by the period of the sound vibrations or pitch 
[7]. The pitch waveform of a snore is parameterized by its 
mean value (Pm), standard deviation (Ps) and interquartile 
range (Piqr); the pitch density (Pdens), defined as the 
fraction of time with pitch over the total duration of a snore; 
and the number of intervals with pitch into a snore (Pints). 

  TABLE I 
CHARACTERISTICS OF THE SNORER SUBJECTS ANALYZED 

Subjects N  Age BMI AHI NS NSG1 

M 46 27.1 3.8 1484 1137 

SD 12 4.1 3.1 1227 1097 
Snorers 

AHI<10 12/5 

R 27-69 18.9-35.5 0.0-8.9 117-3277 27-2788 

M 51 32.3 40.3 2202 1641 

SD 10 5.4 21.7 1093 1050 
OSAS  

AHI≥10 13/6 

R 31-66 26.5-47.6 10.7-90.8 166-4197 71-3905 

N: Number of subjects (Male/Female). M: Mean. SD: Standard Deviation. R: Range. 
BMI: Body Mass Index, AHI: Apnea-Hipoapnea Index, , NS: Total number of snores, 
NSG1: Number of snores in group G1. 

 

The frequency content of a snore is calculated by its 
Power Spectral Density (PSD). The shape of the PSD is 
characterized by a set of parameters [8]: the mean, median, 
peak and maximum frequencies (Fmean, Fmed, Fpeak, Fmax); the 
standard deviation of frequency (StdDev); and the symmetry 
and flatness coefficients (Csymm, CFlatn). The power 
distribution of the PSD is measured by energy ratios in three 
frequency bands of interest: B=(0,500)Hz, B=(100,500)Hz 
and B=(0,800)Hz. The energy in each band B is computed 
over the total energy (RWB) and over the energy out of that 
band (RoutB). 
   The oral and nasal cavities introduce resonances into the 
snoring sound. These can be measured through the peaks of 
the AR spectral envelope (also called formants). The 
formants of snores acquired at the traquea were found to be 
located in five frequency bands B1-B5 [8]. Each formant was 
characterized by its frequency Fi, its amplitude with respect 
to the maximum (Mi) and its depth (Li), i=1:5. 
   In previous works [8] it has been found that the variability 
of snoring features over the night is significantly higher in 
OSAS patients (AHI≥10) than in snorers with a low Apnea-
Hypopnea Index, and that the differences are much more 
significant when this variability is measured in a snore by 
snore basis [8,9]. For a given parameter P of snore s(j), Ps(j), 
the first difference dPs(j) = Ps(j) – Ps(j-1) is calculated. The time 
series dP oscillates around zero and its amplitude is 
measured by the standard deviation (SdP) and the 
interquartile range (IQdP). The difference dP is also 
computed over the time difference dT (dtP≡dP/dT) between 
the instants of consecutive snores. The amplitude of several 

snore parameters’first difference was found to be correlated 
with the AHI [8]. 

C. Classification model 
  A logistic regression model is used for the classification of 
patients. This technique has the advantage over other 
classification techniques, such as discriminant analysis, that 
it does not require a normal hypothesis over the data and that 
the model can be adjusted for a desired sensitivity or 
specifity. A dichotomic variable Y is defined that assumes 
the value Y=0 in snorers with a low Apnea-Hypopnea Index   
and Y=1 in Sleep Apnea patients (AHI≥10). The probability 
that Y=1 is calculated by the logistic model 

 
where the model parameters βj, j=0:K, are estimated by the 
maximum likelihood method from the Nobs available 
observations (xi1, …, xiK), i=1:Nobs, of the variables Xj, 
j=1:K. For a good estimation of the model parameters, the 
number of observations and variables should satisfy  

Nobs ≥ 10·(K + 1)   (1) 
The independent variables Xj are selected among all the 

snore parameters derived from the sound intensity, the PSD, 
the AR spectral envelope, and the Pitch (see section II.B). In 
a previous study, only variability parameters from the PSD 
were considered [8]. Here, for every parameter P, six 
independent variables Xj are obtained performing the 
measures described in Table II. The average values are 
calculated over a number of N=500 snores. This way, 
several observations are available for the classification of 
every patient, and a greater number of variables can be 
included in the model according to (1) because the total 
number of observations Nobs is now greater than the number 
of patients Npac (Nobs=85-143, Npac=36; Table III). 
 

TABLE II 
INDEPENDENT VARIABLES DERIVED FROM EACH SNORE PARAMETER 
Name Description 

P Mean value of the parameter 

SP Standard Deviation of the parameter 

SdP Standard Deviation of the parameter's first difference 

IQdP Interquartile Range of the parameter's first difference 

SdtP Standard Deviation of the parameter's first difference over time 

IQdtP Interquartile Range of the parameter's first difference over time 

P stands for any of the snore parameters defined in section II.B. The same 
symbol P is used for the parameter and its mean value. The averages are 
performed over groups of 500 snores. 

The optimum independent variables are selected by a 
forward stepwise algorithm included in the SPSS packet. In 
each step of the algorithm, the variable with the higher score 
statistic is selected to enter the model. A variable can also be 
removed according to the significance of its conditional 
likelihood ratio statistic. This algorithm allows all the 
available variables to be eligible for entering the model. 
Then, the algorithm selects the best variables among all 
these, and thus an optimum model is obtained. 
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Using the optimum model parameters, each observation 
(xi0, xi1, …, xiK) is classified in one of the two groups through 
the estimated probabilities pi using a threshold c∈(0,1). The 
i’th observation is classified as Y=1 if pi≥c, and as Y=0 
otherwise. A snorer is classified as a sleep-apnea patient if 
his/her number of observations (groups of 500 snores) 
classified as Y=1 is equal or greater than his/her number of 
observations classified as Y=0. In this work, the threshold c 
is optimized to obtain the maximum specificity with 100% 
sensitivity in the classification of patients.  

Three different models are estimated from the available 
database: model A, using all the detected snores;  model B, 
using only snores in group G1; and model C, using the 
detected snores in supine position. The performance of the 
optimum models is evaluated by their sensitivity and 
specificity. Each model is validated by the live-one-out 
procedure. The probabilities pi from all patients are used to 
generate a Receiver Operating Curve (ROC) of each model, 
and the area under this curve (AUC) is estimated. 

III. RESULTS 

The performance of the optimum estimated models for 
patient classification is shown in Table III. Models A and B 
include a combination of eight parameters derived from the 
PSD, the AR spectral envelope and the Pitch of snores. At 
least four of these parameters quantify the snoring 
variability. Model B (group 1 snores) obtains a better 
specificity than model A, but the sensitivity and the AUC 
become much lower in the validation. Model C includes 
snore parameters from the PSD alone, and all of them 
quantify the snoring variability. This model has the same 
sensitivity and a better specificity than model A. But it has a 
reduced AUC, which indicates a poorer performance for 
other working points. The performance of the validated 
models for probability thresholds different from the 
optimum one can be observed in the ROC (Figure 1). 
 

IV. DISCUSSION 

We have shown that it is possible to identify Sleep Apnea 
patients using a logistic model that contains only three to 
eight independent variables derived from snoring. Most of 
the automatically selected parameters measure the snoring 
variability in a snore by snore basis. In previous studies we 
had observed a significantly higher variability of snoring 
spectral parameters in consecutive snores in OSAS patients 
[7,8]. The snoring variability also seems to be a key to 
classify snorers with or without Sleep Apnea. 

Good classification results are also obtained using only G1 

snores (Table III). This fact confirms that Sleep Apnea 
patients are detectable with the information extracted from 
regular snores, without the contribution of the first and 
second snores after an apnea. However, in order to conduct a 
screening test aimed at allowing snorers with a low Apnea-
Hypopnea Index (AHI<10) to avoid a full-night PSG study, 
the sensitivity of the classification model needs to be as high 
as possible. In our validation process the highest sensitivity 
(94.1%) was obtained with the models that use all snores 
available (Table III). When the model is estimated only from 
snores generated in supine position the same sensitivity and 
a better specificity is obtained. Therefore, it seems that these 
snores contain the relevant information for the detection of 
Sleep Apnea patients. However, it would not be wise to base 
a screening test on the information contained in the snores 
generated in a particular position, because it is possible for a 
person not to snore in this position at all during the night. 
    Only one alternative method for the classification of 
patients through snoring information has been published to 
the date [5]. The method uses a model based on the snoring 
pitch, and a sensitivity of 91% at a specificity of 67% is 
obtained in the detection of Sleep Apnea patients (AHI≥10).  

In the preliminary attempts of our study, using only 
information derived from the snoring pitch, the models 
obtained a reduced specificity (45%) at 100% sensitivity. 
When the PSD and AR spectral envelope parameters were 
included into the model, the specificity increased to 89% 
(Fig.1a). We believe that pitch-based classification models 
have poorer performance because pitch only contains 
information about the frequency of the oscillating structures 
that originate snores. The PSD and the AR spectral envelope 
contain additional and valuable information about the 
filtering and the acoustic resonances that take place in the 
upper airway. Our models also have good behavior when 
adjusted to maximize specificity. For example, model A 
obtains 70% sensitivity at a specificity of 100% (Fig.1b). In 
pitch-based classification methods the sensitivity is under 
50% for specificities above 83% [5]. 
   The performance of several portable apnea monitors is 
shown in Table IV. In most cases, the detected apneas and 
hypoapneas are manually revised by a technician before 
giving a definite value of the AHI. Using just one channel -
the tracheal sound- the classification models proposed in this 
work allow an indirect detection of Sleep Apnea patients 
through the characteristics of snores and their variability. 
Their performance is comparable to that of type 2 and type 3 
portable apnea monitors when evaluated on a similar number 
of patients [4]. 

 

TABLE III 
THE OPTIMUM MODELS AND THEIR PERFORMANCE IN THE VALIDATION 

Optimum Model Performance Leave-one-out Validation Results 
Model 

TP FN TN FP Sens (Spec) AUC TP FN TN FP Sens (Spec) AUC 
Npac Nobs copt 

A 17 0 17 2 100 (89.5) 0.994 16 1 14 5 94.1 (73.7) 0.950 19+17 63+80 0.45 

B 17 0 18 1 100 (94.7) 0.994 14 3 17 2 82.3 (89.5) 0.913 19+17 51+63 0.50 

C 17 0 18 1 100 (94.7) 0.997 16 1 15 4 94.1 (78.9) 0.924 19+17 33+52 0.50 

TP: True Positives. FN: False Negatives. TN: True Negatives. FP: False Positives. Sens: Sensitivity (=TP/(TP+FN)). Spec: Specificity (=TN/(TN+FP)).  
Npac: Number of patients. Nobs: Number of observations (groups of 500 snores). copt: optimum probability threshold. 
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Fig.1: Receiver Operating Curves (ROC) of the analyzed models. (a) Performance of the optimum model estimated individually with snore parameters 
from the pitch, the PSD and the AR envelope, and with all of them altogether. (b) Validation performance of the models using all snore parameters. 

 

TABLE IV 
PERFORMANCE OF OTHER SLEEP APNEA DETECTION METHODS 

REPORTED WITH A SIMILAR NUMBER OF PATIENTS 

Detection Method Subject Scoring Sens (Spec) [%] Npac Ref.

AM–T2 Manual 80 (90) 20 [4] 

AM–T3 Manual 100 (66) 34 [4] 

AM–T3 Automatic 100 (100) 29 [4] 

AM–T3 Manual 100 (64) 30 [4] 

AM–T3 Manual 95 (100) 25 [4] 

Snoring Pitch Automatic 91 (67) 29 [5] 

AM: Apnea Monitor Ref.: Reference. Sens: Sensitivity. Spec: Specificity. 
Npac: Number of patients analyzed. T2: Type 2, T3: Type 3 apnea 
monitors.  

   Another method for the detection of Sleep Apnea patients 
based on the transient fluctuations of a logarithmic average 
of the respiratory sound intensity was recently validated [3]. 
Subjects were classified with sensitivity (specificity) of 93% 
(67%) for a Sleep Apnea threshold of AHI≥5, and 99% 
(46%) for AHI≥15. For AHI≥10, intermediate scores would 
be expected. Our method has a similar sensitivity and a 
higher specificity, but the number of subjects analyzed is 
much lower, so this comparison must be taken with caution 
until a validation on a greater database is available. 

 
V. CONCLUSION 

  A new method for indirect detection of Sleep Apnea 
patients through snoring characteristics is proposed. The 
method uses a logistic regression model which is fed with 
several time and frequency snore parameters and their 
variability. The information is contained in all the snores 
automatically detected in nocturnal sound recordings. In the 
model validation, subjects are classified with sensitivity 
higher than 94% and specificity between 73% and 89% 
when all detected snores are used. The models can also be 
adjusted to obtain 100% specificity with a corresponding 
sensitivity between 70% and 87%. These results are better 
than previous reported methods based on snoring analysis, 
and are comparable to the classification scores of several 

portable apnea monitors when evaluated on a similar number 
of patients, but using only one signal channel. The method 
could be complemented with a respiratory disturbance index 
obtained from any auxiliary signal. This technique is a 
promising tool for the screening of snorers, allowing snorers 
with a low Apnea-Hypopnea Index (AHI<10) to avoid a 
full-night polysomnographic study at the hospital. A 
validation on a greater database remains to be done in order 
to further evaluate the performance of the method. 
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