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Abstract— Sample Entropy (SampEn) has been proposed as
a method to overcome limitations associated with approximate
entropy (ApEn). The initial paper describing the SampEn
metric included a characterization study comparing both ApEn
and SampEn against theoretical results and concluded that
SampEn is both more consistent and agrees more closely with
theory for known random processes than ApEn. SampEn has
been used in several studies to analyze the regularity of clinical
and experimental time series. However, questions regarding
how to interpret SampEn in certain clinical situations and its
relationship to classical signal parameters remain unanswered.
In this paper we report the results of a characterization
study intended to provide additional insights regarding the
interpretability of SampEn in the context of biomedical signal
analysis.

I. INTRODUCTION

Approximate Entropy (ApEn) is one of the most popular

metrics used to estimate complexity and regularity in the

field of biomedical signal analysis [1]–[5]. This metric

compares patterns within the time series and estimates the

regularity of the signal. ApEn has been successfully applied

to analyze physiologic signals in diverse applications. For

instance, ApEn has been used to study intracranial hyper-

tension episodes in pediatric patients with traumatic brain

injury [6], [7], to analyze temperature registers with the

objective of predicting outcome [8], [9], to analyze time

series generated by schizophrenic patients [10], and to study

heart rate variability in disease and due to aging [11].

Despite its popularity, ApEn has known shortcomings

including bias, consistency, and dependance on sample

length [12]. These shortcomings have led to the develop-

ment of a related measure, sample entropy (SampEn) [12].

Theoretically, SampEn reduces the ApEn bias by avoiding

counting self-matches, is independent of the time series

length, and is more consistent than ApEn. Additionally,

SampEn is easier to calculate than ApEn.

The algorithm used to measure the complexity of a time

series with SampEn is similar to that used by ApEn. Three

parameters are needed to calculate SampEn: m, r, and N .

Although entropy is defined as m approaches infinity and

as r approaches 0, there are no general guidelines to set the

values of these parameters. Experimental tests indicate that a
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good choice for the pattern length parameter m is m = 1 or

m = 2. On the other hand, it is common to set the threshold

parameter r to be some percentage of the standard deviation

of the time series in order not to depend on the absolute

amplitude of the signal. Recommendations lead to the use

of r between 0.1 and 0.25. If r is too small, noise affects

the SampEn measure. If r is too large, some changes of the

signal are not detected [13], [14].

Recent studies have used SampEn to analyze physiologic

signals in diverse applications such as heart rate variability

analysis [11] and EEG analysis [15]. However, contrary

to ApEn or Lempel–Ziv complexity where characterization

studies have been conducted to aid their interpretability [7],

[16], these studies have not been reported on SampEn. In

this paper we report the results of a study aimed at providing

better interpretability of SampEn in the context of biomedical

signal analysis.

II. METHODS

A. Calculation of Sample Entropy

The sample entropy of a time series 〈x(n)〉 of length N ,

SampEn(m, r, N) is computed as follows:

1) Take m vectors Xm(1), Xm(2), . . . , Xm(N −m + 1),
defined as Xm(i) = [x(i), x(i + 1), . . . , x(i + m −
1)], for 1 ≤ i ≤ N − m + 1. These vectors are m

consecutive values of x, commencing at the ith sample.

2) The distance between vectors Xm(i) and Xm(j),
d[Xm(i), Xm(j)] is defined as:

d[Xm(i), Xm(j)] = max(|x(i + k) − x(j + k)|) (1)

For a given Xm(i), count the number of j(1 ≤ j ≤
N − m, j 6= i), such that d[Xm(i), Xm(j)] ≤ r. This

number is denoted as Bi. For 1 ≤ i ≤ N − m,

two new values are defined and computed, Bm
i =

1

N − m − 1
Bi and Bm(r) =

1

N − m

N−m∑

i=1

Bm

i (r).

3) Length is increased to m = m + 1, and previous steps

are repeated to obtain the counterpart of B with this

new value of m, Am
i

=
1

N − m − 1
Ai and Am(r) =

1

N − m

N−m∑

i=1

Am

i (r), where Bm is the probability that

two sequences coincide for m points, and Am is the

probability that coincide for m + 1 points.

4) Finally, compute SamEn as SampEn(m, r) =

lim{− log[A
m(r)

Bm(r) ]}. Since the time series length is
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Fig. 1. Synthetic signals used in this study: (a) Chirp signal. (b) Signal with growing number of harmonics. (c) Quasiperiodic signal with different noise
levels. (d) White Gaussian noise with step increases in power. (e) Synthetic normal ECG. (f) Synthetic normal ECG with baseline wander.

finite, SampEn is estimated as SampEn(m, r, N) =
− log[A

m

Bm
].

B. Synthetic test signals

In order to characterize SampEn we used a subset of the

test signals that have been previously employed to study

ApEn and Lempel-Ziv complexity [7], [16] . These synthetic

signals include:

1) SampEn versus frequency. Chirp signal whose fre-

quency was increased linearly from 0.5 Hz to 5 Hz

in 5s.

2) SampEn versus frequency content. Four concatenated

periodic signals of 10s with 1, 2, 5 and 7 frequency

components.

3) SampEn versus quasi-periodic signal plus noise. An

amplitude modulated harmonic quasi–periodic signal

with white Gaussian noise of different power levels.

4) SampEn versus noise power.

In addition to these general synthetic signals, we used

a synthetic electrocardiogram in order to study how the

different ECG parameters affected SampEn.
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Fig. 2. Results of the simulation study: (a) Chirp signal. (b) Signal with increasing number of harmonics. (c) Quasiperiodic signal with different noise
levels. (d) White Gaussian white noise with step increases in power. (e) Synthetic normal ECG. (f) Synthetic normal ECG with baseline wande.

III. RESULTS AND DISCUSSION

SampEn was measured using SampEn(m = 2, r =
0.2, N), where the length N was 5120 for ECG signals

(20s), and 1250 for the general signals (10s). The data was

normalized (mean subtraction and division by the standard

deviation) prior to the SampEn computation. We used an

overlapping window of 90% between consecutive analyzed

signal epochs.

The results of the test are shown in Fig. 2. Each plot shows

the results corresponding to the input signals depicted in

Fig.1. Fig. 2–(a) shows the relationship between SampEn and

frequency changes. This test shows that SampEn increases

as the frequency increases up to a saturation point. The sat-

uration point depends on the rate of change of the frequency

and the relationship between the maximum frequency and

the Nyquist rate. Thus, for oversampled signals where the

frequency changes linearly, it is expected that SampEn will

increase also. However, this result does not apply in the

case of undersampled signals. The results of the second test

(Fig. 2–(b)) illustrate this point. Note that SampEn initially

increases as the number of harmonics increases but decreases
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TABLE I

PARAMETERS USED FOR THE SYNTHETIC ECG GENERATION

Parameter Value

Number of beats 256

Sampling frequency (fs) 256 Hz

Beat rate 60 bpm

later as the frequency of the harmonics approaches half

the sample frequency. This type of behavior often leads

to interpretation problems in biomedical signal analysis;

researchers should be cautioned about it since different

sample frequencies may result in different SampEn results.

The relationship between white noise and SampEn is

shown in Fig. 2–(c) and Fig. 2–(d). We can see that for high

SNR involving quasi-periodic signals the SampEn increases

as the SNR decreases (i.e. SampEn is positively correlated

with the noise power) as shown in Fig. 2–(c). However, in

situations of low SNR, SampEn is not so dependent on the

noise power. Note how after the initial transient shown in Fig.

2–(d), SampEn is nearly independent of the noise power.

Fig.2–(e) shows the SampEn measures obtained for a

normal (ideal) ECG with constant wave amplitude and RR

interval, for an ECG with wave amplitude fluctuations (av-

erage amplitude remains the same), and for an ECG with

T wave alternancy starting at beat 128 (in the middle of the

signal) of 50µV in amplitude. In the first case (normal ECG),

the SampEn remained constant around a value of 0.0770 (this

happened also for N=2s, 8s, and 32s and for N=0.25s, it was

0.0940, that is, epoch length was too short to obtain a correct

value). When ECG wave amplitude was allowed to fluctuate

(std=1.0), the average SampEn measured was the same but

it caused a SampEn variance increase. In the last case –

when the T wave alternancy begins, SampEn increases by

1%. These results indicate that a few heartbeats suffice to

compute the SampEn (fast convergence). Additionally, cen-

tered fluctuations do not affect the global SampEn average

(only local SampEn measurements are affected), and even

small changes in ECG complexity (T wave alternancy) are

captured by SampEn.

Fig.2–(f) shows the SampEn results obtained when the

normal ECG was corrupted by uniform random noise (10µV

amplitude) or by sinusoidal baseline wandering (50µV am-

plitude). The SampEn in the first case (noisy ECG) yielded

smaller values than those of ECG with baseline drifts.

As for the case of wave amplitude fluctuations, it seemed

information provided by SampEn was present in both the

measurement average and in its variance. Additionally, both

ECG disturbances caused the SampEn average to raise by

13% or 17%, which may mask other SampEn changes.

IV. CONCLUSIONS

We performed a characterization study of SampEn aimed

at providing additional insights regarding the interpretation

of this complexity metric in the context of biomedical signal

analysis. Our results indicate that SampEn is dependent on

the rate of change of frequency and the relationship between

the maximum frequency of the signal and the Nyquist rate.

The dependance of SampEn on noise power depends on the

SNR. For quasi-periodic signals with high SNR the SampEn

increases as the power of the noise increases. However, for

very low SNR or in the case of pure noise signals, the

SampEn is not so clearly dependent on the noise power.

Finally, we also study how different ECG parameters affect

SampEn. Further studies are needed to provide a complete

characterization of SampEn.
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