
Abstract: Multifractal analysis is known as a useful tool in 
signal analysis. However methods are often used without 
methodological validation. In this study, we define 
multidimensional models in order to validate multifractal 
analysis methods.  

I. INTRODUCTION 
Fractal and multifractal analysis provides powerful tools for 
physical signals analysis. To deal with the only biomedical 
field, it covers a vast field from the 1D (electrophysiological 
signals), to the 2D (medical imaging) and the 3D (volume 
reconstruction from tomographic data). 
Thus various methods are often applied with the purpose of 
classification (normal/abnormal, healthy/pathological,…) : 
their quantitative results are then exploited in a relative way 
with a concern of optimizing their discriminative capacities. 
In addition, their presentation is not always accompanied by 
a methodological validation. 
The purpose of this work is to present models (1D, 2D and 
3D), built according to data of the literature and chosen to 
reflect the characteristics of the real data. These models are 
then used as “benchmarks testing”: the obtained results 
confront the respective theoretical spectra of these models 
with those obtained by several methods of multifractal 
analysis.  

II. MODELS GENERATING 

In this part, we detail the used multifractal models.  

A. 1D Model 
We analyzed an analytically solvable example (binomial 
multiplicative process) [1]. Populations or distributions 
generated by a multiplicative process have many 
applications and with the advantage that many properties of 
their distributions may be easily analyzed (self-similar 
model).  
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Let consider the following multiplicative process, which is 
generated by dividing the unit interval into two pieces, each 
of half the previous length, but with unequal measure (say P1 
and P2=1-P1) and infinitely repeating this process. 
Then the measure at the nth level of this multiplicative 
process would consist of N = 2n of equal length, L=2-n with 
probabilities kkn

i PPLP 21)( −= , k = 0, …, n. The above 
process is defined as: 
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B. 2D Model 
We simulate multifractal singular measurements by using 
multiplicative cascades models [2, 3]. A simple model is the 
p-model, which was introduced in fully developed 
turbulence [4]. It concerns a multiplicative process of 
conservative cascades, to model statistical scale-invariance 
properties of dissipation field in a turbulent flow [5]. Its 
multifractal properties are known analytically.        
The principle is as follows: we start with one square defined 
on the interval [0 1]2, then we divide the square into four 
under squares and we assign randomly to each of them a 
probability pi, such as:  

                ∑ =
i

ip 1                                 (6) 

We iterate this operation on each under square (Fig. 1). 
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Fig. 1 : 2D p-model 

 
The obtained model is thus self-similar, since the square is 
divided into four equal parts. The τ(q) function is easily 
calculable :   
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We deduce the α(q) definition : 
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And by Legendre transform : 
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The α limits were calculated in the same manner as (4) and 
(5) by replacing log(2) by log(4). 

C. 3D Model 
In 3D, we generated two models, which are the most 
employed in medical image analysis. 
In the first hand we extend the 2D model to 3D model, i.e. 
we construct a self-similar model scaled by a multinomial 
measure. We start with one cube defined on the interval [0 
1]3, then we divide the cube into four under cubes and we 
randomly assign to each one a probability pi. We iterate the 
process on each under cubes. Calculations of the theoretical 
multifractal spectrum are indentical to 2D case, by taking pi, 
for i = 1,…, 8 and by replacing log(4) by log(8). 
On the other hand we generate a second model, which is in  
this time, is self-affine. This model is known in the 2D case 
and we extend it to 3D case. 
We start with one cube defined on the interval [0 1]3, we 
divide it according to three directions, we assign to some 
boxes a probability pi and in each one of these boxes we 
iterate the process. Figure 2 schematizes the construction in 
the 2D case to help visualization.  
In our example, we divide the cube into two in X and Y 
directions and four in the Z direction, then in the boxes of 
coordinates I, we affect a corresponding probability P: 

I={(0,0,0),(1,0,0),(1,0,1),(0,1,1),(1,0,2),(1,0,3),(1,1,3)} 
P=(1/20, 1/15, 1/5, 1/10, 1/5, 1/10, 17/60) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 : 2D Sierpinski model (steps 1 and 2) 
It would be too long to detail the calculation of theoretical 
multifractal spectrum of this model: we will limit our 
presentation to express the theoretical τ(q) function, which 
define the multifractal spectrum of a probability [6].  Since 
the measure is a Bernoulli probability, it comes for the τ 
formula :   
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III. MULTIFRACTAL SPECTRUM COMPUTING 
We use the method defined by Chhabra and Jensen [7] for 
multifractal spectrum calculation. We will see below that it 
requires the definition of the Borel measure. We will bring 
to this method the implementation of a new measure. The 
method is summarized on the flowchart of figure 3, in the 
nD case. 
The µ measure is defined by the Choquet capacity. In the 
literature we found many capacities [8,9] with a general 
definition having the following shape: 

      ),(),()( yxgyxO
iBi ∈=δµ                      (14) 

Where O is an operator dealing with the intensity of pixel 
g(x,y) in the box i. As an example, the “sum” operator, 
which is used in Chhabra’s method, or the “max” operator. 
The main drawback of these operators is their lack of 
sensitivity to the amplitude or to the spatial distribution of 
the singularities [10].  
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Fig. 3 : Flowchart of the method 

We define two new measures for this method. First, we 
combine one of the previous operators with the gradient 
“∇ ” computed on each pixel, defined over n axes and the 
norm [10]. Thus we obtain three measures which are 
simultaneously sensitive to amplitude and spatial 
distribution of the singularities. These measures have the 
following expression: 
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With x and y in the box i. 
Secondly, a step of the "DBC" method is used to define a 
measure which we call "DBC-mes", it is defined as follows 
[11]: 
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With nri : the maximum deviation of gray levels in box i. 
           Nr : the sum of the deviations of the boxes. 

IV. RESULTS 

A. 1D case 
In the figure 4, we compare Chhabra’s method with the 
analytical solution. We can see that the results are in 
agreement with the theoretical solution.  
We note that in the 1D case, each measure approximates 
well the theoretical measure (fig. 4).                       (a)                        
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
                            (c)                                           (d) 

Fig. 4: Representation of the approximated spectrum and the theoretical 
spectrum ( continuous traced on the figures). (a) « sum » measure, (b) 
« max » measure, (c) « DBC-mes » measure, (d) « gradient » measure. 

B. 2D case 
We build the model defined in part II-B, with probabilities 
p1=1/5, p2=1/3, p3=1/3, p4=2/15.  
We note that the « gradient » measure gives the worst 
approximation of the spectrum, however the result remains 
correct. For the other measures, the results look very 
satisfactory (fig. 5). 

                        (a)                                         (b) 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n dimensional Signal = 
f(X), X in Rn 

 Divide the signal into cubes of 
width  

Definition of a Borel probability measurement µ
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Calculation of the partition function (q)
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                           (c)                                          (d) 

Fig. 5 : Representation of the approximated spectrum and the theoretical 
spectrum (continuous traced on the figures). (a) « sum » measure, (b) 

« max » measure, (c) « DBC-mes » measure, (d) « gradient » measure. 
C. 3D case 

Concerning the self-similar model, the « gradient » measure 
is not optimal, whereas the three other measurements 
approximate the theoretical multifractal spectrum quasi 
exactly (fig. 6). 
                   (a)                                                (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
Fig. 6 : Representation of the approximated spectrum and the theoretical 

spectrum (continuous traced on the figures). (a) « sum » measure, (b) 
« max » measure, (c) « DBC-mes » measure, (d) « gradient » measure. 

 
For the self-affine model, the results are completely. 
different. When we apply the “max” and “gradient” 
measures, results diverge, and we obtain a concave spectrum 
which is not a good approximation of the model by using « 
sum » measure. Finally for « DBC-mes » measure, the 
results are better than the three other ones, the spectrum 
width (∆α) is equal to that of the theoretical spectrum (see 
fig. 7). 
 

 
Fig. 7 : A comparison between calculated  multifractal spectra  by using the 
« sum » measurements (left) « DBC-mes » measurements (right), and the 

theoretical spectrum. 

V. CONCLUSION 
The aim of this work is to find an absolute value of 
multifractal spectrum, that could be used it in other 
applications than classification (normal/abnormal). For 
example in the biomedical domain, fractal and multifractal 
analysis are often used at ends of classification [12, 13], 
thereafter we plan to use these analysis for other 
applications.  The second interest is to purpose a theoretical 
benchmark platform of results confrontation. 
Chhabra’s method is powerful for self-similar models, but 
that is less true for non self-similar models. Using “DBC-
mes” measure instead of the « sum » (usually used) measure 
gives the best results.  
Finally it would be interesting to test other methods of 
calculation of multifractal spectrum, in particular the 
algorithm based on the wavelet transform (WTMM) [14].  
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