
 

 

 

  

Abstract—This letter presents an automated mammographic 

computer aided diagnosis (CAD) system to detect and segment 

spicules in digital mammograms, termed spiculation 

segmentation with level sets (SSLS). SSLS begins with a 

segmentation of the suspicious mass periphery, which is created 

using a previously developed adaptive level set segmentation 

algorithm (ALSSM) by the authors. The mammogram is then 

analyzed using features derived from the Dixon and Taylor 

Line Operator (DTLO), which is a method of linear structure 

enhancement. Features are extracted, optimized, and then the 

suspicious mass is classified as benign or malignant. To assess 

the system efficacy, 60 difficult mammographic images from the 

Digital Database of Screening Mammography (DDSM), 

containing 30 benign non-spiculated cases, 17 malignant 

spiculated cases, and 13 malignant non-spiculated cases, are 

analyzed. The initial spiculation detection method found 100% 

of the spiculated lesions with no false positive detections, and 

has area under the receiver operating characteristics (ROC) 

curve AZ=1.0. The values using ALSSM (periphery 

segmentation only) are AZ=0.9687 and 0.9708 for two 

investigated feature sets, and increases to AZ=0.9862 using 

SSLS (spiculation segmentation). The best classification results 

are 93% overall accuracy (OA), with three false positives (FP) 

and one false negative (FN) using a 1-NN (Nearest Neighbor) or 

2-NN classifier, and 92% OA with three FP and two FN using a 

maximum likelihood classifier. 
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I. INTRODUCTION 

ammograms are the best method of detecting breast 

cancer [1]. According to the American Cancer Society 

(ACS) recommendations, women aged 40 or over should 

have annual mammographic screening [2]. Every thirteen 

minutes, four American women develop breast cancer, and 

one woman dies from breast cancer [3].  

Since many malignant masses have a spiculated 

margin [4], mammographic computer aided diagnosis (CAD) 

systems that segment spiculations can potentially provide 

better results than a CAD system that does not segment 

spiculations. According to Winchester and Winchester, 
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mammographic mass analysis is based on the mass shape, 

margins, and density, and masses with irregular shapes or 

spiculations increase the probability of malignancy [5]. In 

digital mammograms, spiculations present in digital 

mammograms as nearly linear filaments extending from the 

mass periphery [5], and grow somewhat linearly within ± 45° 
normal to the mass boundary [6]. Jeske, Bernstein, and Stull 

state that the presence of irregular shaped masses and 

spiculations increase the probability of malignancy [7].  For 

many malignant masses, the presence of spicules is therefore 

very important in detecting breast cancer. 

II. PREVIOUS METHODS & BACKGROUND 

In 2D image segmentation, the segmentation boundary is 

the zero level set of an implicit function φ , where the 

segmentation boundary is controlled by the following partial 

differential equation 0t Fφ φ+ ∇ = . The front (the locus of 

points withφ =0) advances or retreats in a direction normal 

to the front, and is controlled by the speed function, 

( ),F x y . If 0F >  ( 0F < ), then the level set boundary will 

expand outward (inward) normal to the boundary; if 0F = , 

then the boundary will not move [8]. 

Previous spiculation image enhancement methods 

include wavelet-based methods, statistical pixel orientation 

analysis, morphological processing, local gradient analysis, 

and custom filtering. Details on these methods may be found 

in [9]
1
. Spiculation segmentation is difficult because (1) 

spiculations are often ill-defined and have poor contrast  [6], 

(2) the lack of adipose tissue (fat) in young breasts can make 

spiculation detection difficult [4], and (3) normal breast 

tissue, such as ligaments, ducts, or blood vessels, often 

appear as a criss-crossing set of linear structures [10]. 

 Part of our proposed algorithm is based on extending 

the methods of spiculation image enhancement of 

Zwiggelaar et al. [11], which is in turn based on the Dixon 

and Taylor (DTLO) line enhancement algorithm [12], and 

these methods will be discussed in detail. Zwiggelaar et al. 

[11] analyzed several spiculation analysis methods, and 

found that the DTLO method provided the best performance. 

DTLO analysis produces a line strength map, S , indicating 

the potential presence of oriented lines. This method was 

originally developed to detect asbestos fibers. DTLO 

requires two parameters: K, which controls how many 

angular orientations are analyzed, and M, the line length 
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parameter, and the method is denoted by DTLO(K,M). For 

instance if K=12 and M=5, then the angular displacement set 

is { }0 ,15 , ,165Θ = ° ° °⋯ , and the line length is 5 pixels. For 

further details on the DTLO algorithm, refer to  [11,12]. 

In spiculation segmentation, several methods have been 

employed, including region growing and specialized 

graylevel feature based segmentation. Since our proposed 

method will be loosely based on the work of Sahiner et al. 

and Chan et al. [6,13], these methods will be discussed in 

detail. References [6,13] used a search region outside of the 

mass periphery and used a custom spiculation measure to 

create a 2D spiculation likelihood map. From this map, an 

experimental threshold is used to segment one pixel of the 

suspected spiculated area. This process is repeated 30 times 

(a 3mm band) in order to segment spicules. If their system 

classified the mass as spiculated, the spicules are added to 

the periphery. For each point on the boundary of the mass 

periphery, it utilized a circular wedge-shaped search region 

with radius of 4 mm, with the apex of the wedge located at a 

given point on the mass periphery, and the wedge size 

defined by ±45° from the normal to the mass boundary, cn
�

, 

where c indicates the c-th point on the boundary. A 

spiculation measure, ( , )c cx i j , is calculated for each point 

( , )c ci j  on the mass periphery. The spiculation measure is 

the average of the acute angle between cn
�

and the angle of 

the image gradient at each point in the search wedge. A final 

post processing step removes areas disjoint from the main 

mass. These methods used the image gradients, which are 

typically very noisy for mammographic images. 

The authors previously developed a mammographic 

CAD system for mass periphery segmentation (segmentation 

of the main cancerous mass, but not the spiculated portions). 

The system used the narrowband level set methodology [8] 

with an adaptive segmentation threshold controlled by a 

border complexity term. This method is denoted the adaptive 

level set segmentation method (ALSSM) [9]. This paper uses 

the segmentations from this method as a basis for segmenting 

the spiculations in spiculated masses. 

III. METHODOLOGY 

This analysis uses a difficult subset from the DDSM 

database [14]. The 60 cases in our data set consist of 30 

benign and 30 malignant cases, where 17 of the malignant 

cases are spiculated [9]. This work is an extension of 

previous research [9] where the mass periphery was 

segmented using the ALSSM method. Our hypothesis is that 

overall results can be improved if the spicules of stellate 

lesions are also segmented, versus segmenting only the 

periphery, because extracting the spicule segmentations can 

give a more complete representation of the suspicious mass. 

The following sections discuss the proposed system in detail. 

To the best of our knowledge, this paper presents the first 

spiculation segmentation of digital mammograms using level 

sets. 

The proposed CAD spiculation system uses the mass 

periphery segmentation via ALSSM as a starting point for 

spiculation detection. Features extracted from DTLO 

analysis of the area around the seed point are analyzed and a 

decision of spiculation presence or absence is made. If 

spicules are present, then the spicules are segmented using 

the proposed level set methodology, and the new 

segmentation becomes the union of the previous mass 

periphery and the spiculation segmentations. Based on the 

new segmentation, features are extracted, and then classified. 

In our approach, both the k nearest neighbor (k-NN) and 

maximum likelihood (ML)  [15] classifiers are used to make 

a benign or malignant decision. The proposed system will be 

evaluated for correct identification of spiculated masses, as 

well as overall performance compared to ALSSM [9]. 

SSLS uses features from the DTLO image to classify the 

suspicious mass as spiculated or non-spiculated. Features 

extracted from a DTLO image analysis are analyzed by a 

kernel classifier, and is an extension of Zwiggelaar et al. 

[11]. The DTLO algorithm is enhanced to provide a more 

robust detection of spiculations, which is an extension of 

Dixon and Taylor [12]. Finally, a search area and spiculation 

detection method similar to Sahiner et al. and Chan et al. 

[6,13] are used.  

Based on good results with contrast limited adaptive 

histogram equalization (CLAHE) in the ALSSM method [9],  

the original mammographic images are first processed using 

CLAHE to remove noise, and then are normalized. This 

enhancement image is denoted 1E . Next, linear structures 

are enhanced using a generalized version of DTLO and 

employing image enhancement techniques on the DTLO line 

strength image, S . According to Hagay, spicules may be 

very numerous, or spread in an irregular manner around the 

mass, and may have thicknesses from a tenth of a mm up to 

three to four mm, and lengths from several up to eight cm 

[16]. In order to better capture linear structures that are more 

than one pixel thick, a modified version of DTLO, called 

generalized DTLO (GDTLO), is proposed. The main 

difference in GDTLO and DTLO is that the former has a 

foreground kernel with a line of width N, while the latter has 

a foreground kernel with a line of width one. The GDTLO 

analysis will be denoted with the following nomenclature: 

GDTLO(K,M,N) denotes GDTLO where K is the number of 

angular orientations, and M and N are the line length and 

width parameters, respectively. 

The GDTLO parameters selected for creation of the 

strength map in this analysis are M=19, N=7, and K=12, 

which was experimentally determined. Three additional steps 

are performed once the strength map is created. First, the 

strength map is normalized. This image is denoted NS . 

Second, NS  is processed by histogram equalization. The 

image resulting from both these preprocessing steps is 

denoted NEQS . Third, a final enhancement image is created 

by element-by-element multiplication of NEQS  with the 

CLAHE enhancement image. This final step further enhances 

bright linear areas in the image. 
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In order to determine which mammograms are 

spiculated, statistical features are extracted from NEQS . The 

image graylevel histogram is analyzed using a logarithmic 

scale, since there can be large differences in bin values. The 

convention that log(0)=0 is used and the number of bins is 

256. The feature vector is the log histogram. This feature 

vector is analyzed using generalized discriminant analysis 

(GDA) to provide a non-linear classification. In GDA, the 

data are mapped by a kernel function to a high dimensional 

feature space, and then linear discriminant analysis is 

applied. The GDA algorithm [17] is utilized with a radial 

basis function (RBF) kernel with 210σ −= , 110− ,⋯ , 210 . 

GDA is the non-linear extension of linear discriminant 

analysis, and is described in detail in [18], and the Statistical 

Pattern Recognition toolbox for Matlab implementation was 

used [17]. 

The GDA analysis is performed using a leave one out 

(LOO) methodology. In a round robin fashion, one case is 

sequestered for testing, while the others are used for training. 

The distances to the nearest malignant and nearest benign 

neighbor are used to classify the test case, using the reduced 

features. Spiculation segmentation is only performed if the 

mass is classified by GDA as spiculated. 

If a mass was classified as spiculated by the above GDA 

analysis, then seed points are extracted from the mass 

periphery in order to facilitate spiculation segmentation. The 

proposed seed point selection algorithm is closely based on 

the concepts proposed in [6,13]. For each point ( , )c ci j  on 

the mass periphery, the outward normal, cn
�

, is calculated 

using the method outlined on pp. 518-519 of [19] with a 

parameter K=20. Then, a rectangular search area, cR , is 

defined such that the rectangle extended from the periphery 

at ( , )c ci j
 
and cR  is oriented with the long axis along the 

direction of cn
�

. Next, the pixels in cR  are extracted such 

that the pixel at the analysis point, ( , )c ci j , is located at the 

top center pixel in cR , and pixels radially outward from the 

mass boundary are filled in from top to bottom (i.e. larger 

radii are closer to the bottom of cR ). The size of cR  
is set to 

150 pixels long (i.e., along the normal direction) by 80 pixels 

wide (6.53 mm long by 3.48 mm wide). 

Next, a DTLO-based analysis is performed. The angles 

analyzed, SΘ , is a set of equally spaced angles in the range 

of ±45° with a step size of 2°. For each angle mθ , ( ),F mS cθ  

and ( ),B mS cθ , the sums of the enhanced image pixels times 

the corresponding foreground and background mask pixels, 

respectively, are calculated, where the DTLO angle, mθ , is 

the angle and the periphery pixel index is c. The spiculation 

feature, cf , is 

 

 ( ) ( ){ }max , ,
S

c F m B mf S c S c
θ

θ θ
∈Θ

= − .  (1) 

 

Then, two experimentally determined thresholds, 1 0.4T =  

and 2 0.1T = , are applied in order to remove areas with low 

contrast or low background mask values from cf , as 

follows: 

 

 
( )1 2,

0

OPT
c c B m

c

f f T and S c T
f

otherwise

θ > >′ = 


.  (2) 

 

where OPT
mθ  is the optimum angle selected in eq. (1).  

For each set of consecutive nonzero values in cf ′ , the 

index with the maximum cf ′  value is chosen as a seed point. 

Since the search areas of nearby pixels could potentially 

point to the same spicule, redundant seed points could be 

detected. Therefore, any seed point which had a neighboring 

seed point within ten border pixels with a lower value of  cf ′  

is removed from the seed point list. Finally, any seed points 

which have an optimal direction such that a straight line in 

that direction would leave and then re-enter the periphery are 

discarded, which could happen for areas that are very 

convoluted.  

Let ns be the final number of seed points detected. The 

results of the spiculation seed point detection are sets of: (1) 

spiculation seed points, { }1, , nsSP P P=
� �

⋯ , (2) optimal angles 

for each seed point, { }1 , ,OPT OPT
OPT nsΘ θ θ= ⋯ ,  and (3) 

optimal unit magnitude vectors pointing in the optimal 

spiculation direction, { }1 , ,OPT OPT
OPT nsD D D=

� �

⋯ . These seed 

points correspond to the set of optimal locations on the 

periphery where the line detector response is maximized. 

In order to segment the spicules, a simple, yet effective 

method is to examine the magnitude of the GDTLO 

spiculation enhancement image,
 SPICE , in combination with 

the direction difference between the optimal spiculation 

vector, OPT
cD
�

, and the GDTLO angle, DTD
�

, for each point 

in a rectangle oriented with the long part in the direction 

of OPT
cD
�

, as follows: 

 

 ( , ) ( , ) , ( , )
OPT

c SPIC c DTF x y E x y D D x y=
� �

,  (3) 

 

where ⋅  denotes absolute value and ,⋅ ⋅ denotes the inner 

(dot) product. The absolute values are required since the 

Dixon Taylor optimal angle is limited to the range [0, )π and 

the optimal angle has range [0,2 )π . 

A threshold is applied to the result from eq. (3). In order 

to remove small spurs from the image, for each pixel in  

( , )cF x y which are ≥ T3, the orthogonal projection to the 

optimal angle vector OPT
cD
�

, is calculated. The threshold 

value is experimentally determined as 3 0.4T = . Values 

greater than 12 pixels away are clipped at 12 pixels. Then, 
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for each set of pixels in the direction of the optimal tangent 
OPT
cT
�

, the values are filtered with a low pass filter in order 

to smooth the signal. The filter impulse response [ ] 1/15h n =  

for {0, ,14}n∈ ⋯ . The filter length is experimentally 

determined. For each pixel along the optimal angle vector 
OPT
cD
�

, the mean pixel distance in the direction of OPT
cT
�

and 

OPT
cT−
�

is calculated. Let ( , )CLD x y be the smallest distance 

from the point (x,y) to the mean pixel distance center line. 

The final speed functions is  

  

 3

1
( , ) ( , )exp ( , )

8
c c CLF x y F x y D x y T

 ′ = − − 
 

,    (4) 

 

where the constant 1/8 in the exponential term is chosen to 

allow the spiculation to grow to a certain size tangentially, 

and the constant 3T  ensures that the areas segmented have a 

minimal graylevel value. Once all of the spicules have been 

segmented, the spiculation segmentation becomes the union 

of the original mass periphery and each individual 

spiculation segmentation. 

The features extracted include patient age, 

morphological features, statistical graylevel features, and 

features based on the segmentation boundary and the rubber 

band straightening transform (RBST) [19]. The features are 

described in Table I. Detailed references for each feature 

may be found in [9]. Note that all features are extracted from 

the original mammogram image, not the enhanced image. 

Feature sets A and B are feature sets I and II in [20]. There 

are a large number of features, and the feature set must be 

reduced due to the limited training samples available. 

Stepwise linear discriminant analysis (SLDA) using receiver 

operating characteristics (ROC) area under the curve (AZ) 

with forward selection and backward rejection is used to 

optimally select up to ten features and project them to 

maximize class separation. The SLDA implementation is 

described in [20]. The number of features are limited to ten 

to avoid overtraining. After feature optimization, the k-NN 

and ML classifiers are used to classify the tumor as 

malignant or benign. 

Once the features are extracted, each mammogram is 

classified using a LOO methodology using a k-NN or ML 

classifier. The results are evaluated using the area under the 

ROC curve (AZ) [21-23], the AZ confidence intervals (95% 

confidence level), as well as overall accuracy (OA), number 

of true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) [21]. 

IV. RESULTS AND DISCUSSION 

Fig. 1 shows several example cases. In this figure, each 

row corresponds to one case, and the leftmost image is the 

original mammogram, the center image is the GDTLO 

enhanced image, and the rightmost image shows the 

physician ROI (white line), and the periphery and spiculation 

segmentations (black line). The GDA feature analysis is 

performed and all of the spiculated masses were detected. 

All spiculated masses are correctly identified, with no false 

positives, for an overall accuracy of 100%. These results are 

very encouraging, and validated the intuition and stated 

desire of Zwiggelaar et al. to use a more sophisticated 

classifier [11]. The overall AZ=1.0, indicating that the 

training data are perfectly separable, using σ = 10
-2
. 

From Table II, it can be seen that in general, the SSLS 

(based on periphery plus spiculation segmentation) results 

outperform the corresponding ALSSM (periphery only 

segmentation) results in terms of higher OA, lower number 

of FN, and higher AZ values. For feature set A, which 

contains patient age, morphological, statistical, and NRL 

features, the results increased the highest k-NN OA from 

87% to 88%. The ML classifier had a striking difference in 

OA, going from 80% with ALSSM to 88%. In general, the 

ML classifier had more FN and fewer FP than the k-NN 

classifier, which is an undesirable result. Feature set B, 

which includes the features in feature set A as well as the 

SGLD texture features, showed improvements. The best 

results were for k=5, which improved the overall accuracies 

from 82% for ALSSM to 88% and 90%, and reduced the FN 

from 6 for ALSSM to 3. ML achieved 90% versus 87% OA 

for ALSSM. For feature set C, which is the patient age and 

the SGLD features, the results were the best. One striking 

 

 

 

 

Fig. 1. Selected spiculated mammograms showing from left to right: 

CLAHE enhanced image, GTDLO image, ALSSM periphery segmentation, 

and the proposed spiculation segmentation, respectively. In the two right-

most images, the physician supplied ROI is shown in white. If the ROI is 

larger than the portion of the image shown, then it is clipped. The overall 

spiculation segmentations are shown in black. 
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difference is the large increase in overall accuracy for k=1 

and 2: ALSSM has 77% overall accuracy, and the SSLS 

result is 93% OA. The number of FN was reduced from 5 to 

1. The ML classifier had similar results. 

Comparing all of these results, some of the features 

selected by SLDA in feature sets A and B had some class 

confusion. This also points out that adding more features 

may not necessarily improve results, which may be a result 

of the limited training set size (59 images in each LOO 

iteration). Furthermore, SLDA was used, which did not 

provide an exhaustive search for best feature selection. The 

AZ values for SSLS analysis improved for all feature sets, 

indicating that the spiculation features are more powerful 

discriminators than the periphery features alone. 

V. CONCLUSIONS 

The proposed SSLS method is based on extensions of 

the spiculation image enhancement of Zwiggelaar et al. [11], 

by the DTLO line enhancement algorithm of Dixon and 

Taylor [12], and by the spiculation segmentation methods of 

Sahiner et al. and Chan et al. [6,13], and provides an 

important extension of their work. The level set methodology 

provided a fast and efficient means of segmenting the 

spiculated regions. Fortunately, since spicules are fairly 

linear and grow outwards from the periphery, a simple speed 

function could be generated to segment the spicules. 

The GDA method proved to be very effective in 

analyzing the images for spiculation presence. For the 

DDSM images in this study, each spiculated image is 

detected properly, and no non-spiculated images are falsely 

classified as spiculated. The GDTLO enhancement algorithm 

proved to be very effective at highlighting linear structures.  

This can clearly be seen in Fig. 1. The proposed method 

performed very well, and in almost all cases, performed 

better than segmentation of the periphery alone. The best 

results are obtained from feature set C (patient age and the 

SGLD features), for k=1 and 2 with the k-NN classifier, 

where the OA are 93%, 3 FP and 1 FN. In general, the k-NN 

classifier outperformed the ML classifier slightly in terms of 

higher OA and fewer FN. 

Finally, there are very few CAD systems that utilize 

spiculation segmentation, and many of them utilize features 

derived from the image gradient in order to segment 

spicules, and since mammographic images are very noisy, 

the proposed method, based on the DTLO line operator, 

could provide a robust alternative which may be less 

sensitive to noise. Future work includes running the 

proposed system on different datasets and on a larger dataset 

from the DDSM database. 

REFERENCES 

[1] National Cancer Institute, "National Cancer Institute Fact Sheet: 

Improving Methods for Breast Cancer Detection and Diagnosis," 

2006. Available: http://www.cancer.gov/cancertopics/screening 

/breast. 

[2] R.A. Smith, V. Cokkinides, and H.J. Eyre, "American Cancer Society 

Guidelines for the Early Detection of Cancer, 2006," CA: A Cancer 

Journal for Clinicians, vol. 56, no. 1, pp. 11-25, 2006. 

[3] V.F. Andolina, S.L. Lillé, and K.M. Willison, Mammographic 

Imaging: A Practical Guide. New York, NY: Lippincott Williams & 

Wilkins, 1992. 

[4] R.L. Egan, Breast Imaging: Diagnosis and Morphology of Breast 

Diseases. Philadelphia, PA: W. B. Saunders Co., 1988. 

[5] D.J. Winchester and D.P. Winchester, American Cancer Society Atlas 

of Clinical Oncology: Breast Cancer. London, UK: B.C. Decker, 

2000. 

[6] H.-P. Chan, N. Petrick, and B. Sahiner, "Computer-Aided Breast 

Cancer Diagnosis," in Artificial Intelligence Techniques in Breast 

Cancer Diagnosis and Prognosis, A. Jain, A. Jain, S. Jain, and L. 

Jain, Eds. River Edge, NJ: World Scientific, pp. 179-264, 2002. 

[7] J.M. Jeske, J.R. Bernstein, and M.A. Stull, "Screening and Diagnostic 

Imaging," in American Cancer Society Atlas of Clinical Oncology 

London, UK: B.C. Decker, pp. 41-63, 2000. 

[8] J.A. Sethian, Level Set Methods and Fast Marching Methods: 

Evolving Interfaces in Computational Geometry, Fluid Mechanics, 

Computer Vision, and Materials Science, 2nd ed. Cambridge, UK: 

Cambridge University Press, 2002. 

[9] J.E. Ball, "Three stage level set segmentation of mass core, periphery, 

and spiculations for automated image analysis of digital 

mammograms." Ph.D. in Electrical Engineering. Starkville, MS: 

Mississippi State Univ., May 2007. 

[10] N. Karssemeijer, "Detection of Masses in Mammograms," in 

Artificial Intelligence Techniques in Breast Cancer Diagnosis and 

Prognosis, A. Jain, A. Jain, S. Jain, and L. Jain, Eds. River Edge, NJ: 

World Scientific, pp. 187-212, 2000. 

[11] R. Zwiggelaar, S.M. Astley, C.R.M. Boggis, and C.J. Taylor, "Linear 

structures in mammographic images: detection and classification," 

IEEE Trans. on Medical Imaging, vol. 23, no. 9, pp. 1077-1086, 

Sept. 2004. 

[12] R.N. Dixon and C.J. Taylor, "Automated Asbestos Fiber Counting," 

1979 Inst. Physics Conference, vol. 44, pp. 178-185, 1979. 

[13] B. Sahiner, H.-P. Chan, N. Petrick, M.A. Helvie, and L.M. Hadjiiski, 

"Improvement of mammographic mass characterization using 

spiculation measures and morphological features," Medical Physics, 

vol. 28, no. 7, pp. 1455-1465, Jul. 2001. 

[14] M. Heath, K.W. Bowyer, D. Kopans, W. Kegelmeyer, R. Moore, K. 

Chang, and S. Munishkumaran, "Current status of the Digital 

Database for Screening Mammography," in Digital Mammography, 

N. Karssemeijer, M. Thijssen, J. Hendriks, and L. van Erning, Eds. 

Boston, MA: Kluwer Academic Publishers, pp. 457-460, 1998. 

[15] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed. 

New York: John Wiley & Sons, 2001. 

[16] C. Hagay, "Stellate Images," in Mammography: A Guide to 

Interpretation, Translated ed, A. Le Treut and M. H. Dilhuydy, Eds. 

St. Louis, MO: Mosby Year Book, pp. 66-78, 1991. 

[17] V. Franc and V. Hlavac, "Statistical Pattern Recognition Toolbox for 

Matlab User's Guide, Document Number CTU–CMP–2004–08," 

version 2.05: Center for Machine Perception, Czech Technical 

University. Jun. 2004.  available: http://cmp.felk.cvut.cz/. 

[18] G. Baudat and F. Anouar, "Generalized discriminant analysis using a 

kernel approach," Neural Computation, vol. 12, no. 10, pp. 2385-

2404, Oct. 2000. 

[19] B. Sahiner, H.-P. Chan, N. Petrick, M.A. Helvie, and M.M. Goodsitt, 

"Computerized characterization of masses on mammograms: The 

rubber band straightening transform and texture analysis," Medical 

Physics, vol. 25, no. 4, pp. 516-526, Apr. 1998. 

[20] J.E. Ball and L.M. Bruce, "Digital Mammographic Computer Aided 

Diagnosis (CAD) using Adaptive Level Set Segmentation," IEEE 

Trans. on Medical Imaging, [under review]. 

[21] M. Kallergi, "Medical Image Analysis Methods," in The Electrical 

Engineering and Applied Signal Processing Series, L. Costaridou, 

Ed. New York: Taylor & Francis, pp. 433-472, 2005. 

[22] J.A. Hanley and B.J. McNeil, "The Meaning and Use of the Area 

under a Receiver Operating Characteristic (ROC) Curve," Radiology, 

vol. 143, pp. 29-36, Apr. 1982. 

[23] A. Agatheeswaran, "Analysis of the effects of JPEG2000 compression 

on texture features extracted from digital mammograms ". Masters 

Thesis in Electrical and Computer Engineering. Starkville, MS: 

Mississippi State University, pp. 20-37, 42-43, Dec. 2004. 

4983



 

 

 

 
TABLE  I 

FEATURE LIST. FEATURE SETS A AND B ARE THE SAME FEATURE SETS I AND II IN [20]. 

1 This denotes the region from which the features were extracted. DDSM=DDSM database (there is no region, as the patient age is part of the database). 

SB=segmentation boundary. NRL stands for Normalized Radial Length. RBST=Rubber Band Straightening Transform [19]. GLCM stands for gray level 

co-occurrence matrix. GLCM is also known as spatial gray level dependence (SGLD).  2 The extent ratio is max(length, height) / min(length, height).  3 the 

Gray level std. dev. ratio is the ratio of the std. dev. of the gray levels inside the segmentation to the std. dev. of gray levels outside the segmentation 

boundary and within 200 pixels of the segmentation boundary.  4 The GLCM SB features are calculated at distances d={1,2,4,6,8,10} and directions 

θ={0°,45°,90°,135°}. There will be a total of 6 GLCM features x 6 distances x 4 angles for 144 features. 5 The RBST features are the same features as the 

GLCM SB features. The RBST uses a parameter k to choose how many pixels before and after are used to create the normal vector to the spiculation 

boundary [19]. The RBST features are calculated for distances k={2,4,6,8,10,12}  For each value of k, there will be 144 features generated. Therefore there 

are 864 = 144 x 6 features. 

 

 

 

Feature 

Set 

A B C 

Feature Type and 

Source 1 
Feature List 

Number of 

Features 

• • • 
Patient age 

 (DDSM) 
Age 1 

• •  Morphological (SB) 

Area, Axis ratio, Box ratio, Circularity, Convex hull area, Eccentricity,  Equivalent diameter, 

Extent, Extent ratio2, Major axis length, Minor axis length, Perimeter length, Solidity, Width to 

height ratio 

14 

• •  Statistical (SB) Gray level mean, Gray level  std. dev, Gray level std. dev. ratio3 3 

• •  NRL (SB) Entropy, Length, Mean, Roughness, Std. dev., Zero crossing count 6 

 • • GLCM  (SB) (Note 4) Energy, Variance, Correlation, Inertia, Inverse Difference Moment, Entropy 144 

 • • GLCM (RBST) (Note 5) Energy, Variance, Correlation, Inertia, Inverse Difference Moment, Entropy 864 

TABLE  II 

OVERALL RESULTS. THE BEST RESULTS SHOWN IN BOLD (BEST = HIGHEST OVERALL ACCURACY WITH LOWEST NUMBER OF FN).  

THE FEATURE SETS (A, B, AND C) ARE DEFINED IN TABLE  I. UNDER THE AZ COLUMN, THE LOWER NUMBERS INDICATE THE 95% CONFIDENCE INTERVAL. 

 

SSLS Analysis I SSLS Analysis II ALSSM 
FS 

CL OA TP TN FP FN AZ OA TP TN FP FN AZ OA TP TN FP FN AZ 

1-NN 82 25 24 6 5 87 28 24 6 2 82 25 24 6 5 

2-NN 82 25 24 6 5 87 28 24 6 2 82 25 24 6 5 

3-NN 83 25 25 5 5 88 28 25 5 2 80 25 23 7 5 

4-NN 82 24 25 5 6 87 27 25 5 3 85 27 24 6 3 

5-NN 88 27 26 4 3 90 28 26 4 2 85 27 24 6 3 

6-NN 87 27 25 5 3 88 28 25 5 2 87 28 24 6 2 

7-NN 87 27 25 5 3 88 28 25 5 2 87 28 24 6 2 

8-NN 87 27 25 5 3 88 28 25 5 2 87 28 24 6 2 

9-NN 87 27 25 5 3 88 28 25 5 2 85 27 24 6 3 

10-NN 87 27 25 5 3 88 28 25 5 2 85 27 24 6 3 

A 

ML 88 25 28 2 5 

0.9862 

± 

0.0006 

 

90 26 28 2 4 

0.9862 

± 

0.0006 

 

80 21 27 3 9 

0.9687 

± 

0.0014 

 

1-NN 82 25 24 6 5 87 28 24 6 2 85 25 26 4 5 

2-NN 82 25 24 6 5 87 28 24 6 2 85 25 26 4 5 

3-NN 83 25 25 5 5 88 28 25 5 2 82 24 25 5 6 

4-NN 82 24 25 5 6 87 27 25 5 3 82 24 25 5 6 

5-NN 88 27 26 4 3 90 28 26 4 2 82 24 25 5 6 

6-NN 87 27 25 5 3 88 28 25 5 2 83 25 25 5 5 

7-NN 87 27 25 5 3 88 28 25 5 2 85 26 25 5 4 

8-NN 87 27 25 5 3 88 28 25 5 2 87 27 25 5 3 

9-NN 87 27 25 5 3 88 28 25 5 2 87 27 25 5 3 

10-NN 87 27 25 5 3 88 28 25 5 2 87 27 25 5 3 

B 

ML 88 25 28 2 5 

0.9862 

± 

0.0007 

90 26 28 2 4 

0.9862 

± 

0.0007 

87 26 26 4 4 

0.9708 

± 

0.0017 

1-NN 93 29 27 3 1 93 29 27 3 1 77 25 21 9 5 

2-NN 93 29 27 3 1 93 29 27 3 1 77 25 21 9 5 

3-NN 92 29 26 4 1 92 29 26 4 1 80 25 23 7 5 

4-NN 92 29 26 4 1 92 29 26 4 1 82 26 23 7 4 

5-NN 92 29 26 4 1 92 29 26 4 1 83 26 24 6 4 

6-NN 92 29 26 4 1 92 29 26 4 1 83 26 24 6 4 

7-NN 90 28 26 4 2 90 28 26 4 2 85 26 25 5 4 

8-NN 92 29 26 4 1 92 29 26 4 1 85 26 25 5 4 

9-NN 90 28 26 4 2 90 28 26 4 2 85 26 25 5 4 

10-NN 92 29 26 4 1 92 29 26 4 1 87 26 26 4 4 

C 

ML 90 27 27 3 3 

0.9849 

± 

0.0006 

92 28 27 3 2 

0.9849 

± 

0.0006 

87 26 26 4 4 

0.9679 

± 

0.0018 
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