
 

 

 

  

Abstract—We present a mammographic computer aided 

diagnosis (CAD) system, which uses an adaptive level set 

segmentation method (ALSSM), which segments suspicious 

masses in the polar domain and adaptively adjusts the border 

threshold at each angle to provide high-quality segmentation 

results. The primary contribution of this paper is the adaptive 

speed function for controlling level set segmentation. To assess 

the efficacy of the system, 60 relatively difficult cases (30 

benign, 30 malignant) from the Digital Database of Screening 

Mammography (DDSM) are analyzed. The segmentation   

efficacy is analyzed qualitatively via visual inspection and 

quantitatively via the area under the receiver operating 

characteristics (ROC) curve (AZ) and classification accuracies. 

For the ALSSM, the best results are 87% overall accuracy, 

AZ=0.9687 with 28/30 malignant cases detected. The qualitative 

and quantitative results show that the ALSSM provides 

excellent segmentation and classification results and compares 

favorably to previous CAD systems in the literature which also 

used the DDSM database. 
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I. INTRODUCTION 

reast cancer is the number one leading type of women’s 

cancer, and the second most fatal type of women’s 

cancer, according to the American Cancer Society [3]. 

Mammograms are currently considered to be the best method 

for early detection of breast cancer [7,8]. In this letter, a 

digital mammography computer aided diagnosis (CAD) 

system using level set segmentation is investigated. This 

work stems from previous research of the authors [11], 

where simple statistical methods were used for image 

segmentation, and from the authors previous experience 

using level sets for remote sensing image segmentation [15-

18]. 

Mammograms often have poor contrast and need noise 

reduction and image enhancement in order for a CAD system 

to be able to perform a good image analysis. Pisano et al. 

concluded that contrast limited adaptive histogram 

equalization (CLAHE) “… might be helpful in allowing 

 
Manuscript received March 2, 2007.  

J.E. Ball is with the Navy Surface Warfare Center, Dahlgren, VA 22485, 

USA (e-mail: john.e.ball@navy.mil).  

L.M. Bruce is with the Electrical and Computer Engineering 

Department and the GeoResources Institute, Mississippi State University, 

Starkville, MS 39759, USA (e-mail: bruce@hpc.msstate.edu). 

radiologists to see subtle edge information, such as 

spiculations” [20]. Other image preprocessing methods are 

fuzzy transformations, convolution with an isotropic 

Gaussian kernel, and wavelet and multi-scale enhancement. 

There are many approaches to mammographic mass 

segmentation, including morphological texture features,  

gray level image statistics, fuzzy image processing, multi-

resolution analysis, support vector machines, statistical 

methods, and customized filtering. Many of these  

approaches are summarized in [22] and discussed in detail in 

[23]
1
. 

II. LEVEL SET METHODS 

The 2D level set image segmentation methodology uses 

the zero level set of a 3D implicit function, φ , defined as 

2( , , ) : [0, )x y t Tφ ℜ × →ℜ , where T is some large maximum 

time value for the system. The segmentation boundary is 

controlled by the following partial differential equation 

(PDE), 0tφ φ+ ∇ =F , where tφ  is the partial derivative of 

φ  with respect to time, φ∇  is the gradient of φ , and the 

time variable, t, is used in numerical evaluation of the PDE 

[24]. The speed function, F, controls the level set evolution. 

If F>0 (F<0), then the level set boundary will expand 

outwards (inwards) normal to the boundary; if F=0, then the 

boundary will not move. The implicit function φ  is a signed 

distance function (SDF), which means that ,x yφ  is the signed 

distance to the nearest segmentation boundary point from 

point (x,y), with a negative (positive) sign for points inside 

(outside) of the  boundary [24]. 

III. DATA 

A subset of the DDSM database obtained from the H. 

Lee Moffitt Cancer Research Center at the University of 

South Florida [25] is used in this research. The test data set 

consists of 60 test cases (30 benign, 30 malignant). Each test 

case consists of a mammographic image and a region of 

interest (ROI) template, as well as age and diagnosis data 

about each patient. The ROI template was created by expert 

radiologists and is considered to be the accurate location of 

the suspicious area in the mammogram. These diagnoses 

were validated with biopsies and follow–up visits. The 

original mammographic images were scanned with a Howtek 

scanner with a pixel size of 43.5
2
 µm

2
 and 12 bits per pixel 
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radiometric resolution [25]. Each mammogram is cropped to 

[2048 ×  2048] pixels in an area around the ROI. 

IV. METHODOLOGY 

The mammogram is preprocessed to remove noise and 

to enhance the mass. Then the suspicious mass is segmented, 

features are extracted and optimized, and then the classifier 

makes a benign or malignant decision. The proposed level 

set methods is denoted ALSSM. 

CLAHE is used to remove noise and enhance the 

mammographic images. Next, a custom algorithm is used to 

provide non-linear enhancement. This algorithm is described 

in pseudo code in Fig. 1. The notation “.*” indicates element 

by element multiplication. Lines 2-4 perform a nonlinear 

adjustment to the image based on the image gray level 

statistics. Line 5 computes a mean value image using 16 by 

16 blocks (size determined experimentally). Lines 6-9 

provide further image enhancement. The function normalize 

image (NI) is used because it forces the image pixels to be in 

the range [0,1]. The enhancement image is created in line 9, 

and converted to polar in line 10. 

Line 11 gauges the average rate of decay of the pixels 

radially away from the seed point. Line 12 determines a 

standard deviation for the isotropic Gaussian filter. The filter 

is modified so that pixels within one standard deviation of 

the seed pixel are not affected, but after one standard 

deviation, the decay becomes Gaussian. Previous researchers 

have used a fixed isotropic Gaussian filter [26,27]. However, 

better results were achieved in this study when using this 

modified isotropic filter. The size of the filter adapts to the 

characteristics of the mass under investigation (reference Fig. 

1, lines 11-13). The enhanced images can be seen in 

Cartesian form in the third column on Fig. 3. The function 

‘HistogramEqualize’ is the Matlab function ‘histeq’. 

A semi-automated seed point selection algorithm is used 

to determine the starting point for mass segmentation. A 

simple image thresholding algorithm with gray level 

regression is then run to detect areas in the image that are 

larger than a predefined minimum area and minimum gray 

level. These constraints are introduced because masses are 

typically medium to large sized objects in the cropped 

image, and masses typically appear as brighter areas on the 

digital mammograms [28]. The algorithm is shown in Fig.  2. 

The parameters N=40 quantization bins, AMIN=5000 pixels 

and R=4 levels are experimentally determined. The function 

imregionalmax is a Matlab function. 

The segmentation is performed in the polar domain. 

Using the seed point as the center of the polar image (i.e. 

zero radius), a circular region from the enhanced 

mammographic image is converted to the polar domain. The 

polar image, ( , )r θP , has dimensions [RMAX ×  N]. RMAX is 

set to 500 pixels (approximately 21.8 mm) to accommodate 

the images with larger masses, and the discrete angles used 

to create the polar image are { }2 n Nθ π∈Θ = , with 

{ }0,1, , 1n N∈ −⋯ , where N=2880 is the number of angles 

sampled in the polar image, providing a 1/8 degree angular 

sampling rate, in order to have good resolution for large radii 

and thus handle large tumors). The segmentation algorithm 

uses the enhanced image pixel properties and varies the 

speed function according to an adaptive threshold, ( )t θ , 

θ ∈Θ , 

 

 
 

Fig. 1.  Image enhancement pseudo code. 

 

which is adaptively adjusted as the level set segmentation 

proceeds.  In order to quantify the border mathematically, a 

scalar border complexity measure (BCM) and is defined as 

follows. Let ( )r θ and ( )Pr θ , be the current and previous 

iteration border radius, respectively, for θ ∈Θ . Define the 

BCM as  

 

 ( )( )mean rBCM
θ

θ= ∆ , (1) 

 

where the mean value is taken over θ ∈Θ , 

( ) ( ) ( ) = r Pr rθ θ θ∆ − is the change in the border radius, and 

⋅  is the absolute value operator. This method is similar to  

Image Enhancement Pseudo Code 

 

Inputs: I–mammogram image, seed point 

Output: E– Cartesian enhanced image,P-Polar 
        enhanced image  

 

1  ICL ← CLAHE(I) 

2  I2 ← NI(I),  µ ← mean of all pixels in I2 

3  I3 ← NI(ICL) .* (1-exp(-(I2/µ))) 
4  I3 ← NI(I3) 

 5  M2 ← RM(I3,[16 16]) 

6  I4 ← NHEQ(I3) 

7  I5 ← NI(I3 + RM(M2,[16 16])) 

8  I6 ← NHEQ(I5) .* I4 

9  E ← NI(I6) 

10 P ← Polar(E) with center at seed point 

11  µ(r) ← mean{P(r,θ)} for all r; µMAX ← max(µ) 
12 σ ← smallest radius r with µ(r)≥0.4µMAX 

13 
( )( )2

1

( , )
exp 0.5 /

r

r
r r

σ
θ

σ σ σ

≤


← 
− − >  

G  

14 P(r,θ) ← P(r,θ) .* G(r,θ) for all r,θ 

15 ( )( ) / ( )mean std← −P P P P   

 

function N = NI(X) % Normalize image 

N ← X - min(X) 

N ← N / max(N) 
 

function N = NHEQ(X) % Normalize and hist. eq. 

 N ← HistogramEqualize(NI(X)) 
 
% Function to compute the regional mean 

function N = RM(X,[b1,b2]) 

 M ← image where each pixel is mean value 

of a b1 by b2 block B in image X 

N ← M resized to size of X using 2D bilinear 
interpolation 
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Fig. 2.  Seed point selection algorithm pseudo code. 

 

the border regularization term in [29]. In order to provide 

some regularity to the segmentation procedure, a smoothed 

version of the border radius difference, ( )SMr θ∆ ,  is created 

by filtering ( )r θ∆  with a simple order ( 1)SN −  scaled 

boxcar smoothing filter with impulse response [ ] 1

S

h n
N

= , 

{ }0,1, , 1Sn N∈ −⋯ . SN =41 was selected since it provides 

smoothing over approximately five degrees. 

A DC threshold and an AC threshold are summed to 

create the overall pixel threshold.  The AC threshold keeps 

small blobs that are not part of the mass from being 

segmented. The AC threshold is a function of angle, while 

the DC threshold is a constant across all angles. Both 

thresholds can vary as the segmentation iterations progress. 

The AC threshold is adjusted using 

 

 

( ) ( )( )

( )2

2
1 exp 0.5

AC AC SM

SM

AC

T sign r

r

θ α θ

θ

σ

= ⋅ ∆ ⋅

  ∆
  − − ⋅

    

, (2) 

 

where sign(x) = 1 if x>0, 0 if x=0, and -1 otherwise, and the 

parameters ACσ =4.0 and ACα =0.1 are experimentally 

determined. The exponential term penalizes the areas 

changing rapidly more than the areas with little change. The 

DC threshold is adjusted using 

 

 _

( , )
DC DC PREV

DC

clip BCM
T T

β
α

 ∆
= − 

 
, (3) 

 

where _DC PREVT is the DC threshold at the previous 

iteration, and the parameters DCα =0.1 and β =0.1 are 

experimentally determined. The function clip(a,b) clips the 

input a at ±b. Running the segmentation without the clipping 

function caused instability in some of the masses for the TDC 

component. The overall segmentation threshold is given by 

 

 ( ) ( )DC ACT T Tθ θ= + , (4) 

 

and the level set speed function (in the polar domain) is  

 

 ( ) ( ), , , ,r r r rF sign P T Hθ θ θ θφ γ= − − , (5) 

 

where ( ),rT Tθ θ= . The second term in eq. (5) keeps the 

level set from segmenting radially more than γ =20 pixels 

outwards from the current segmentation, but it does not 

constrain the level set if the boundary is moving radially 

inwards toward the seed point. 

Feature extraction is performed using the original 

mammographic image after level set segmentation is 

completed and the segmentation has been converted from the 

polar to the Cartesian domain. Two feature sets are 

extracted, set I and II. These features are detailed in Table I. 

Feature set I contains patient features, morphological 

features, features extracted from the normalized radial length 

(NRL), and statistical gray level features. Feature set II 

contains the features in feature set I, plus the textural features 

created from the segmentation boundary (spatial grey level 

dependence (SGLD) SB features) and the rubber band 

straightening transform (RBST) (SGLD RBST features). The 

RBST is generated with an outward radius of 40 pixels and 

inward radius of 40 pixels. In order to create the SGLD 

features, the mammograms are quantized with N=20 

quantization levels. Details of standard features may be 

found in the citations listed in Table I. 

A leave-one-out (LOO) methodology is used to perform 

classification [29]. In this method, one patient’s data is used 

for testing, while all of the other patients’ data form a 

training set which is used to train the classifier. This process 

repeats in a round-robin order for each patient. A near-

optimal feature set is selected from the training set and are 

analyzed using stepwise linear discriminant analysis 

(SLDA), with forward selection and backwards rejection, 

using the ROC AZ metric [30-32] to select a combination of 

features that maximizes this metric [1,11,22,29,33]. The 

SLDA implementation details may be found in [32] (see 

footnote 1). Although this method does not use an exhaustive 

search, the SLDA method provides a good compromise for 

feature selection. Since a LOO methodology is used, for each 

case there are 59 training cases. In order to keep from 

overtraining, we limited the SLDA number of features 

selected to ten. 

A  k-nearest neighbor (K-NN) classifier [34] is used to 

classify the SLDA optimally weighted features from the 

LOO testing sample, and the system efficacy is measured 

with ROC analysis, overall accuracy, and the number of true 

positives (TP), false positives (FP), true negatives (TN), 

false negatives (FN) [30,31]. The values of k in the k-NN 

Seed Point Selection Algorithm Pseudo Code 

 

Inputs: I–mammogram image;ROI–ROI image; N– 

Quantization bins; R–Regression levels; Amin– 
Minimum segmentation area. 

Output: (x,y) – Seed point  

 

1  P ← Quantize I to N bins 

2 RMAX ← All zero image same size as I 

3 For r = 1 : R 

4    Set RMAX = max(RMAX, imregionalmax(q)) 

5    Set q = q – RMAX 

6 End 

7 Fill holes in RMAX 

8  Remove areas smaller than Amin in RMAX 

9 Remove areas in RMAX that don’t overlap ROI 

10 RMAX ← sign(RMAX) 

11 ROI ← ROI shrunk by 20 pixels 
12 Select seed point as brightest pixel in region 

and in ROI closest to centroid of ROI 
13 Show user seed point and allow user to select 

from another region in RMAX if desired 
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classifier were varied in order to asses the role this parameter 

played. 

V. EXPERIMENTAL RESULTS AND CONCLUSIONS 

Fig. 3 shows 14 representative cases, along with the 

segmentation results, as well as the physician supplied ROI. 

Table II shows the k-NN classifier results (OA, 

TP,TN,FP,FN, as well as overall AZ values with confidence 

intervals.) Table III shows comparisons of the proposed 

results (ALSSM) to several previous studies that used the 

DDSM database. Overall, the ALSSM results outperformed 

most of the CAD systems listed in the table. However, for a 

truly fair comparison, each system should be tested on the 

same set of mammograms. 

Mass segmentation in digital mammography is a 

difficult task. A semi-automated procedure was performed to 

determine the original seed point in the mammogram based 

on the physician ROI. The ALSSM method was 

implemented. Two sets of features were extracted, and a k-

NN classifier was used to classify the results as malignant or 

benign. The best results were from feature set I (Patient Age, 

morphological, statistical, and NRL features) and k=6,7,8. 

The ALSSM compared well to previous studies using the 

DDSM database.  
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Feature 

Set 

I II 

Feature Type and source 1 (Number of Features) Features 4,5 

• • Patient age [25] (1) Patient Age 

• • Morphological (SB) [4,5] 
(14) Area, Axis ratio, Box ratio, Circularity, Convex hull area, Eccentricity, Equivalent diameter, Extent, 

Extent ratio2, Major axis length, Minor axis length, Perimeter length, Solidity, Width to height ratio 

• • Statistical (SB) [22] (3) Gray Level Mean, Gray level  Std. Dev., Gray Level Std. Dev. Ratio3 

• • NRL (SB) [22] (6) Entropy, Length, Mean, Roughness, Std. dev., Zero Crossing Count 

 • GLCM  (SB)  [22,32,35] (144) Energy, Variance, Correlation, Inertia, Inverse Difference Moment, Entropy  

 • GLCM(RBST)[1,22,32,35] (864) Energy, Variance, Correlation, Inertia, Inverse Difference Moment, Entropy 

TABLE  II 

OVERALL RESULTS. THE BEST RESULTS SHOWN IN BOLD (BEST = HIGHEST 

OVERALL ACCURACY WITH LOWEST NUMBER OF FN).  

THE FEATURE SETS (I AND II) ARE DEFINED IN TABLE  I. 

k 1 
FS 

2 

OA  

% 
TP TN FP FN 

Overall 

AZ ,CI 2 

1 82 25 24 6 5 

2 82 25 24 6 5 

3 80 25 23 7 5 

4 85 27 24 6 3 

5 85 27 24 6 3 

6 87 28 24 6 2 

7 87 28 24 6 2 

8 87 28 24 6 2 

9 85 27 24 6 3 

10 

I 

85 27 24 6 3 

0.9687 

± 

0.0014 

1 85 25 26 4 5 

2 85 25 26 4 5 

3 82 24 25 5 6 

4 82 24 25 5 6 

5 82 24 25 5 6 

6 83 25 25 5 5 

7 85 26 25 5 4 

8 87 27 25 5 3 

9 87 27 25 5 3 

10 

II 

87 27 25 5 3 

0.9708 

± 

0.0017 

1 k-NN classifier parameter.  2 FS=Feature Set, CI=Confidence Interval  

 

 

1 This column denotes the region from which the features were extracted. DDSM=DDSM database (there is no region, as the patient age is part of the 

database). SB=segmentation boundary. NRL stands for Normalized Radial Length. RBST=Rubber Band Straightening Transform [1]. GLCM stands for 

gray level co-occurrence matrix. GLCM is also known as spatial gray level dependence (SGLD).  2 The extent ratio is max(length, height) / min(length, 

height).  3 the Gray level std. dev. ratio is the ratio of the std. dev. of the gray levels inside the segmentation to the std. dev. of gray levels outside the 

segmentation boundary and within 200 pixels of the segmentation boundary.  4 The GLCM SB features are calculated at distances d={1,2,4,6,8,10} and 

directions θ={0°,45°,90°,135°}. There will be a total of 6 GLCM features x 6 distances x 4 angles for 144 features. 5 The RBST features are the same 

features as the GLCM SB features. The RBST uses a parameter k to choose how many pixels before and after are used to create the normal vector to the 

boundary [1]. The RBST features are calculated for distances k={2,4,6,8,10,12}  For each value of k, there will be 144 features generated. Therefore there 

are 864 = 144 x 6 features. 
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FEATURE LIST 
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Fig. 3. Images and segmentation results for selected cases. Left-to-right: Original mammogram image, CLAHE enhanced image, level set segmentation 

enhanced image, CLAHE enhanced image with overlays of the DDSM ROI (white line), ALSSM (the proposed) segmentation (black line).  

 

 

 

TABLE  III 

RESULTS FOR PREVIOUS STUDIES USING THE DDSM DATABASE. 
 

Author and Reference Results Author and Reference Results 

ALSSM (Proposed method) 87% OA, 2 FP Heath and Bowyer [2] ~ 0.7 TPF @ 2 FPPI 

Catarious et al. [4,5]  93% OA Kinnard et al. [6] Az = 0.66 to 0.84 

Beller et al. [9] 70% OA Sample [10] ~ 80% @ 2.68 FPPI 

Bilska-Wolak et al. [12] 
At 98% sensitivity, spares 

~50% of benign biopsies 
Szekely et al. [13] 0.90 TPF 

Cheng and Cui [14] 0.92 TPF @ 1.33 FPPI te Brake et al. [19] 0.90 TPF @ 1.0 FPPI 

Eltonsy et al. [21] 85.7% TPF   
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