
 
 

 

 
Abstract— In the context of tele-monitoring, great interest is 

presently devoted to physical activity, mainly of elderly or 
people with disabilities. In this context, many researchers 
studied the recognition of activities of daily living by using 
accelerometers. The present work proposes a novel algorithm 
for activity recognition that considers the variability in 
movement speed, by using dynamic programming. This 
objective is realized by means of a matching and recognition 
technique that determines the  distance between the signal 
input and a set of previously defined templates. Two different 
approaches are here presented, one based on Dynamic Time 
Warping (DTW) and the other based on the Derivative 
Dynamic Time Warping (DDTW). The algorithm was applied 
to the recognition of gait, climbing and descending stairs, using 
a biaxial accelerometer placed on the shin. The results on 
DDTW, obtained by using only one sensor channel on the shin 
showed an average recognition score of 95%, higher than the 
values obtained with DTW (around 85%). Both DTW and 
DDTW consistently show higher classification rate  than 
classical Linear Time Warping (LTW). 

I. INTRODUCTION 
EARABLE sensors are an established means to monitor 
motor activities, both at home and in the community 

[1, 2]. The reliability of those systems is needed to overcome 
limitations associated with the use of self-reports, which 
suffer from bias and discrepancies between judges [3]. 
Even if the pedometer has been extensively used in this 
context to roughly estimate energy expenditure on the basis 
of the number of steps [4-6], and the reliability in the 
estimation of energy expenditure from pedometer data has 
been quantified providing good results [7], these systems 
showed poorer results than other instruments in terms of 
both reliability and validity [8]. Among the alternatives, 
positioning a single accelerometer on the body segment 
mostly involved in the relevant motor activity represents a 
suitable choice [9]. Following this perspective, several 
researchers used accelerometers for diverse applications in 
clinical and rehabilitation contexts: monitoring tremor in 
Parkinson disease [10], and classifying motor activities in 
chronic obstructive pulmonary disease [11]. 
When activities are made on the field, though, one crucial 
element for their analysis consists in the ability of a system 
to discriminate between different activities, some of which 
are generally performed sequentially (walking on level 
surfaces and up or down stairs, rising from a chair and 

sitting down), and some can be performed simultaneously 
(making movements with the upper limbs while walking).  
Most of the techniques for activity detection and 
classification are performed on a hierarchical basis, i.e. first 
by estimating body posture through first order moments 
extracted from accelerometry data (typically the mean value 
of the signal components) [12], whereas higher order 
moments are generally used to discriminate between 
different activities corresponding to the same body posture, 
based on differences in terms of energy or amplitude. More 
sophisticated techniques are based e.g. on Hidden Markov 
Model and quadratic discriminant analysis [13], or shape 
matching [14]. 
To improve the classification performance, both in terms of 
misclassification reduction, and in terms of accuracy in 
timing detection, the redundancy offered by adding two or 
more accelerometers is generally exploited [15, 16], whose 
counter effect is though apparent in terms of set-up. 
No matter which kind of classification is employed, a non 
trivial problem resides in the inherent variability of the 
waveforms, associated with the variability in performing a 
task during activities of daily living. If the speed 
significantly affects accelerometers output in walking [17], 
the way the motor activity patterns associated with different 
conditions (age, speed, subjectivity) vary cannot be simply 
modelled as a linear warping, so that it is necessary to take 
into account nonlinearities coming from the stretching and 
shrinking of the different phases of each activity. 
To this end, this work proposes a method based on Dynamic 
Time Warping (DTW), which takes these nonlinearities into 
account. DTW has been successfully used in different fields 
of biosignal processing, e.g. the alignment of event related 
potentials [18], or of ECG leads [19], but to the authors’ 
knowledge, no application of DTW to the alignment and 
recognition of accelerometers data has been published yet.  

The approach to the DTW in this work is based on a 
variation of the Derivative Dynamic Time Warping 
(DDTW) presented from other researchers [20]. This idea 
was born considering that accelerometer signals can 
remarkably differ in amplitude among subjects, yet 
maintaining similar shape. 

It is possible that, by modelling nonlinearities in the 
variation of the accelerometer data patterns, one great 
advantage would reveal: i.e. avoiding the subject calibration 
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phase, generally needed to create the set of template patterns 
to be used for the shape matching by using a non subject 
specific set. 

II. MATERIALS AND METHODS 

A. Participants and Procedure 
Three healthy consenting participants were recruited for 

the tests. Tests were divided into 2 sessions: Walk Session 
(WS) and Stair Session (SS). WS signals were recorded 
while the participants were walking straight on plain along a 
10 m long unmarked path. For SS signals participants used a 
common 16-steps stairway with steps 6 cm high and 30 cm 
long. Participants were invited to stop walking at the end of 
the path or at the end of the stairway, before turning back 
and start walking again. The recording sessions were 
designed to obtain a balanced number of samples for every 
motor activity and to avoid biased execution of the 
movement by asking the participants to walk for a fixed 
number of gait cycles. 

Recognition performance was evaluated by dividing data 
into three classes associated to the analysed motor activities: 
Walk Level (WL), Stair Up (SU) and Stair Down (SD). 

B. Data acquisition 
A biaxial accelerometer sensor (based on Analog Devices 

ADXL202) was placed on the medial portion of the right 
shin with axes disposed on the sagittal plane along radial and 
longitudinal directions. The position and orientation of the 
accelerometers was chosen according to the literature [12, 
21]. All accelerometer signals were band-pass filtered 
between 0.2 and 15 Hz. 

 
C. Data processing: template extraction 
In this first phase, a complete set of signal templates, 

associated to different motor activities, was built. The set 
was formed by using one template per subject, per activity 
and per sensor channel. The calibration process allows the 

construction of signal templates after dividing the signals 
into portions associated to a specific motor activity. 

The segmentation was carried on by detecting the 
activities on the basis of a maximum energy approach, and 
using a statistical threshold.  

More in particular, signals have been portioned into 
epochs by calculating the integral and comparing it with a 
statistical threshold value (see Figure 2). The segmentation 
was then obtained by using the overall maximum among 
successive points above  the threshold as trigger. 

For each motor activity, the template was then obtained 
by randomly selecting and then averaging, through spline 
interpolation, five occurrences for each motor activity, 
discarding the activity cycles associated to movement 
initiation and termination. Templates associated to motor 
activities were respectively called as WT, SDT, SUT for 
WL, SD, and SU activities. Around 25% of all the motor 
activity epochs were used to create the set of templates.  

D. Data Processing: activity detection 
The first phase of accelerometer data processing consists 

of detecting single motor activities from the accelerometer 
data. To this end, a statistical approach has been used, which 
is based on the maximum energy approach described for the 
template extraction. Some regularity in the pace of each 
motor activity was taken into account to minimize false 
positives. Around 75% of all the detected motor activities 
for each subject were used to test the algorithms. 

The motor activity epochs are of different length, 
corresponding to the variability in speed with which each 
activity is completed. All those epochs are grouped in a 
structure for the classification procedure described in the 
following. 

E. Data Processing: DTW and DDTW 
DDTW is acronym of Derivative Dynamic Time 

Warping. This algorithm is used in order to overcome some 
limitations of the classic DTW algorithm. To find the 
similarity between two sequences, DTW looks for the best 
alignment, which is generally referred to as Warp-Path, and 
thus "warps" the time axis of one of the series and calculates 
the distance between the two sequences. In some cases it can 
produce some misalignments, for instance when multiple 
points on one time series correspond to only one point in the 
matching time series (“singularities”), or when the two 
sequences strongly vary in the Y-axis. Figure 2 shows the 
limitations of DTW. 
In the present case, each input signals is considered as a 
sequence of n samples X=[x1,x2,…,xn], and the template is a 
sequence of m samples Y=[y1,y2,…,ym]. DTW builds a 
matrix D [nxm] in which each element represents the 
distance between the i-th element of X(i) and the j-th 
element of Y(j). Then, a new matrix Θ is introduced, with  

[ ]( , ) ( , ) min ( 1, 1), ( , 1), ( 1, )j i d j i j i j i j iθ θ θ θ= + − − − −  (1) 
so that each element is the sum between the local distance 
d(j,i) and the minimum of the total distances of the 
neighbour-most elements. 

Segmentation procedure

 
Fig. 2. Sample of accelerometer signal (above), and corresponding 
activity detection based on integration and threshold (below). 

 
Fig. 1. The experimental set up. 
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The warping path W, is a contiguous  set of matrix elements 
that defines a mapping between X and Y. The k-element of W 
is defined as wk = (i,j)k: 

1 2, ,..., max( , ) 1kW w w w n m k n m= < < + −  (2) 
The warping path generally undergoes to several constraints: 
among them, the requirement for the warping path to start 
and finish in diagonally opposite corner cells of the matrix, 
restriction to the number of allowable steps in the warping 
path to adjacent cells, and monotonicity in time. 

Among all the warping paths that satisfy the above 
conditions, for recognition/classification purposes the 
interest is in the path that minimizes the warping cost: 

  (3) 

DDTW differs from DTW by considering the square of the 
difference of the estimated derivatives of Xi  and Yi instead 
of the original time series time series: 

( ) 1 1 1( ) ( ) / 2
2

i i i iX X X XD X − + −− + −=  1<i<n (4) 

This is the average of the slope between the line through the 
sample and its left neighbour, and the slope of the line 
through the left neighbour and the right neighbour. 
From this point on, the procedure follows the one described 
for DTW. Figure 4 exemplifies the performance of the 
recognition for both DTW and DDTW. Both DTW and 
DDTW results underwent the distance calculation of each 
motor activity with each template. Each motor activity was 
classified according to the minimum distance criterion, and 
the performance was evaluated by considering three classes 
associated with WL, SU, SD. For comparison, also classical 
liner time warping (LTW) was performed, by linearly 
stretching/shrinking each epoch to match the template 
duration. Signals were then classified according to the 
maximum value of the normalized cross-correlation 
coefficient. 
 

III. RESULTS AND DISCUSSION 
Distributions of both DTW and DDTW distances for each 

of the three motor activities are represented in Figures 5 and 
6, for radial and longitudinal shin sensor, respectively. It is 
worth outlining that a robust classification corresponds to 
well separated distance distributions between activities for 
each motor activity portion. For both the sensors, DDTW 
consistently granted better separated distributions than 
DTW, and, as a result, better performance in classification 
for all the activities recognized through the longitudinal shin 
sensor, and for two out of three activities, as recognized 
through the radial shin sensor. 

 

 

 
The percentage of recognized activities is obtained by 

averaging the recognition performance for each subject. 
Classification rate is displayed in Tables I and II. As far as 
the sensor position is concerned, longitudinal direction 
shows better results than radial in DDTW, and comparable 
in DTW. 

TABLE II 
RECOGNIZED ACTIVITIES (LONGITUDINAL DIRECTION) 

Motor Activity DDTW DTW LTW 

WL 100% 82% 87% 
SU 100% 91% 89% 
SD 100% 81% 96% 

 
Fig. 5. DDTW and DTW distances for each activity template and each 
activity, radial direction sensor. Each bar represents interquartile 
range, whereas the symbol shows the median value.

TABLE I 
RECOGNIZED ACTIVITIES (RADIAL DIRECTION) 

Motor Activity DDTW DTW LTW 

WL 86% 84% 74% 
SU 93% 93% 58% 
SD 90% 78% 96% 

 
Fig. 3. Alignment  produced by DTW. Alignment fails because of 
differences in the y axis. 

 
Fig. 4. The alignment product by DTW (a) compared with the 
alignment produced by DDTW (b). K is the number of points of the 
optimal path. 

4932



 
 

 

 

IV. CONCLUSIONS 
This paper describes a new method to recognize different 

dynamic activities while standing: level walking, climbing 
and descending stairs. A set of biaxial accelerometer sensors 
were placed on the shin of the subjects. The results showed 
that both DTW and DDTW provide an effective solution to 
the classification of motor activities from acceleration data 
coming from single sensor accelerometers placed on the 
shin. DDTW is to be considered more effective than DTW in 
the classification of these activities. From a data processing 
point of view, it is likely that more sophisticated approaches 
to DDTW might enhance the performance. 

Given the possibility to incorporate more than a single 
axis accelerometer over one device, it is envisioned that the 
classification rate would be enhanced by combining results 
coming from single sensors, and it is also likely that other 
activities during standing, such as turning around, or open 
and close doors, might be classified as well.  

The flexibility offered by DDTW in capturing the 
variability of waveforms due to different speed execution 
can be used to minimize the calibration phase for template 
extraction, so that it wouldn’t be necessary in the future to 
ask the subject to perform tasks in a controlled environment. 
This would greatly enhance the applicability of this 
approach in a context of self-monitoring and tele-care. 
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Fig. 6.  DDTW and DTW distances for each activity template and 
each activity, longitudinal direction sensor. Each bar represents 
interquartile range, whereas the symbol shows the median value.  
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