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Abstract—In this paper, an efficient compute-aided detection 
method is proposed for detecting Ground-Glass Opacity (GGO) 
nodules in thoracic CT images. GGOs represent a clinically 
important type of lung nodule which are ignored by many 
existing CAD systems.  Anti-geometric diffusion is used as 
preprocessing to remove image noise. Geometric shape features 
(such as shape index and dot enhancement), are calculated for 
each voxel within the lung area to extract potential nodule 
concentrations. Rule based filtering is then applied to remove 
False Positive regions. The proposed method has been validated 
on a clinical dataset of 50 thoracic CT scans that contains 52 
GGO nodules. A total of 48 nodules were correctly detected and 
resulted in an average detection rate of 92.3%, with the number 
of false positives at approximately 12.7/scan (0.07/slice). The 
high detection performance of the method suggested promising 
potential for clinical applications. 

I. INTRODUCTION

H
Co

ERE has been growing interests in developing 
mputer-Aided Detection (CAD) technology with 

Computer Tomography (CT) for lung cancer, which is the 
main cause of cancer deaths. Lung nodules can be classified 
into two categories: solid nodules characterized by their high 
contrast and Ground-Glass Opacity (GGO) nodules with faint 
contrast and fuzzy margins [1]-[3]. Studies on lung nodule 
CAD are reported frequently in the literature. However, most 
of the work has been focused on solid nodule detection only. 
GGO nodule detection remains one of the major difficulties 
in CAD development. This paper describes a new CT lung 
CAD method which aims to detect GGO nodules.  

 Lung CAD techniques in the literature can be divided into 
two groups [4]: intensity based and model based methods. 
Intensity based detection methods are usually based on the 
assumption that lung nodules have relatively higher intensity 
than those of lung parenchyma, employing techniques such as 
multiple thresholding [5], local adaptive thresholding [6] etc, 
to identify nodules in lung area. The model based methods 
employ techniques (such as template-matching [7], 
object-based deformation [8] etc) to separate spherical 
shaped nodules from elongated structures.  

The purpose of this paper is to propose a new and effective 
approach to lung CAD which uses 3D local geometry and 
statistical intensity features for GGO nodule extraction. The 
most closely related research to our own is that by Yoshida 

[9], in which shape index is calculated on each 3D voxel 
within the segmented lungs. However, there are several major 
differences. Firstly, in our paper, anti-geometric diffusion, 
which diffuses image across the image edges, is used as a 
preprocessing step to remove the noise and enhance the 
image. The smoothness of the edge generated by 
anti-geometric diffusion is better suited to the accurate 
calculation of voxel based geometric features. Secondly, 
apart from using the shape index feature to generate initial 
potential nodule candidates, the Dot map is calculated, based 
on the eigenvalues of Hessian matrix for each voxel, and used 
to simultaneously enhance the objects of a specific shape 
(such as dot-like nodule object), and suppress object of other 
shapes (such as line-like vessel object). Thirdly, an adaptive 
thresholding method based on the intensity statistics of the 
low sphericity concentration is employed to efficiently 
segment potential nodule objects. Rule-based filtering is 
finally applied as a main false positive (FP) reduction step to 
quickly remove easily dismissible FP objects.  
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II. METHODOLOGY

Fig.1 provides a summary of the proposed automatic lung 
GGO nodule detection scheme. 

Fig.1 Flow diagram of proposed GGO nodule detection system

A. Lung Segmentation 
Lung segmentation consists of two stages: Initial lung 
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contour generation and lung contour refinement. In the first 
stage, an adaptive fuzzy thresholding value, which is 
calculated based on the cumulative histogram and first 
moment of image Hunsfield Unit (HU), is used to segment the 
lung parenchyma [10]; In the second stage, the initial lung 
contour is further refined based on the detection of the 
concave regions from the critical points. Fig. 2 shows the 
results of the segmented lung mask on one real CT image 
with a nodule attached to the lung wall. 

(a) (b) 

(c) (d) 
Fig. 2 Lung segmentation based on fuzzy thresholding method. (a) Original 
CT lung image; (b) Initial lung mask extraction; (c) Segmented concave 
regions (an attached nodule and other attached tissues) based on critical 
points on the initial contour; (d) Final segmented lung mask. 

B. Anti-Geometric Diffusion 
An anti-geometric diffusion model proposed by Siddharth, 

et al [11] is used as a preprocessing step to remove noise and 
enhance the image. Given iso-intensity contours (level 
curves) of an image , with ),,( zyxI  and  denoting 
gradient and tangent directions respectively, the 
anti-geometric diffusion can be defined as: 
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While the traditional geometric diffusion model diffuses 
the image along the image edges, the anti-geometric diffusion 
model diffuses across image edges. The advantages of 
diffusing across image edge include better localization, less 
sensitivity to noise, and better connectivity. The smoothness 
of the edge is very important for the accurate voxel based 
geometry feature calculations which will be discussed in the 
next section. 

C. Shape Index: A 3D Geometric Feature for Potential 
Nodule Detection 
A 3D geometric feature, volumetric shape index [12], is 

calculated for each voxel to extract the potential nodule 
candidates. This is based on the fact that an isolated nodule or 
a nodule attached to a blood vessel is generally either 

depicted as a sphere or has some spherical elements, while a 
blood vessel is usually oblong. 

The volumetric shape index [12] at voxel  can be 
defined as: 
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where pk1  and pk 2  are the principal curvatures at 
voxel p, which are calculated based on Gaussian and mean 
curvatures [9] [12]. 

Shape index is a very useful feature. Theoretically, it 
represents the local shape feature at each voxel while being 
independent of the image intensity. This feature is 
advantageous here because it can be used for detecting low 
contrast GGO nodules. To illustrate the characteristics of the 
shape index, Fig. 3(a) and (b) show an original lung image and 
its corresponding shape index map, Fig. 3(c) and (d) are 
highlighted shape index values on one nodule and one blood 
vessel, respectively. It is noted that the average of the shape 
index values for the nodule is higher than that of the blood 
vessel. A hysteresis thresholding [9] is then applied to extract 
potential nodule candidates as shown in Fig. 4(b).

Fig. 4 demonstrates that the shape index feature is capable 
of detecting the sphere-like GGO nodule elements. However, 
some non-nodule objects with high sphericity elements (e.g. 
joining of vessels) are also detected as shown in Fig. 4(b). The 
following Dot Enhancement filtering is proposed to remove 
those non-nodule objects. 

(a) (b) 
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0.86 0.91 0.96 0.82 0.82 0.75 0.74 0.74 0.73 0.74 
0.86 0.92 0.97 0.91 0.92 0.77 0.72 0.76 0.76 0.73 
0.80 0.94 0.90 0.90 0.94 0.74 0.75 0.77 0.75 0.74 
0.81 0.80 0.81 0.91 0.91 0.72 0.70 0.76 0.77 0.76 
0.86 0.84 0.82 0.86 0.90 0.73 0.74 0.74 0.77 0.75 

(c) (d) 
Fig. 3 An example of shape index map with GGO nodules (a) Original lung 
image; (b) Shape index map; (c) Shape index values for sphere-like nodule; 
(d) Shape index values for cylinder-like blood vessel 

(a)                      (b) 
Fig. 4 An example of potential nodule regions extraction. (a) Shape index 
map from right lung in Fig.3(b); (b) Detected potential nodule candidates. 
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D. Multi-Scale Dot Enhancement Filtering
The Dot enhancement (DE) algorithm is used to 

simultaneously enhance objects of a specific shape (such as 
dot-like objects), and suppress objects of other shapes (such 
as line-like objects). The dot value is defined as [13]: 
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where 1 , 2 and 3  are three eigenvalues from a 33
Hessian matrix which is calculated based on the second 
derivatives. 

In this paper, a dot map is calculated on each potential 
nodule region obtained from the shape index map, in which 
three Gaussian scales with a range of  are used. For 
each potential nodule candidate , we calculate: 
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where,  is the dot value at ith voxel in i
dotD sl region 

calculated based on (3), d is a pre-defined threshold for the 
dot value in the DE map, count  is a pre-defined threshold 
for the number of voxels whose dot values are larger than 

d , and .
otherwise           0,

0  xif              1,
xS

The region is kept as a potential nodule candidate if it 
satisfies the condition set in (4), otherwise the region is 
considered to be an FP region.  

sl

E. Potential Nodule Segmentation Based on an Adaptive 
Thresholding Method 
An adaptive thresholding method is used on the extracted 

sub-image from the potential nodule concentration ( sl ) to 
efficiently segment low contrast GGO nodules. 

Two intensity thresholds are calculated as follows: 
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where,  and are the mean and maximum 
intensities in the region , respectively. is the 
minimum intensity in the sub-image. 

Meanf Maxf

sl minf

Fig. 5 shows the segmented potential nodule based on the 
adaptive thresholding method. Fig. 5(b) is one cross-section 
of the nodule concentration mask which was calculated 
from the shape index map. The mean and minimum intensity 
values used in (5) are calculated based on this mask. A 3D 
labeling technique is applied on the segmented image and the 
region which has the largest overlap with the concentration 
mask is used as the final segmented nodule object as shown in 

sl

Fig. 5(c). The adaptive thresholding is a fast segmentation 
method. The thresholds for the nodule segmentation are 
estimated based on the intensity statistics (such as mean and 
maximum intensities) of the region concentration. In the case 

of low contrast GGO nodules which usually have smaller 
intensity variance within the nodule objects, the intensity 
statistics from sl are similar to that of the segmented 
nodule. This is the main reason that the fast algorithm is 
suitable for low contrast GGO nodule segmentation. 

(a) (b) (c)
Fig. 5 Potential nodule segmentation based on adaptive thresholding; (a) One 
cross-section of 3D GGO nodule image; (b) Potential nodule concentration 

sl from shape index map; (c) Segmented nodule region 

F. Rule-based Filtering to Remove False Positive Regions 
Geometric shape features are calculated on each segmented 

potential nodule object seg . Rule-based filtering is then 

applied to further remove FP regions.  
1) 3D Maximum distance to the boundary 

For each potential nodule object, a 3D distance map is 
calculated based on the distance transform technique [14]. 
The maximum distance value to the boundary within the 
object can be used to remove very thin objects. For example, 
the ith region seg is kept as a potential nodule candidate if 

disifDisMax , where is the maximum distance 
value for ith object and 

ifDisMax

dis  is a pre-defined threshold for 
object thinness.  

2) 3D Object filtering based on motion tracking 
Assuming 3D object contains more than one 2D blob (a 

blob is a cross-section defined in x-y plane) along the 
scanning (z) direction, an object is defined as a blob-moving 
object if its 2D blobs on different continuous slices are 
moving along x-y plane. The blob-moving object 
characteristic indicates a potential blood vessel. Fig. 6 shows 
an example of a blob-moving object. For each 2D blob, a 
kernel is calculated based on the distance transform 
technique. By measuring the degree of overlapping 
consecutive 2D kernel regions along the scanning direction, 
the blob-moving objects can be detected and removed from 
nodule candidates.  

(a)

(b) 
Fig. 6 An example of a blob-moving object; (a) 3D view of the object (b) 2D 
view of each blob on different continuous slices (along scan direction). 
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3) Other local features 
Apart from the two main features mentioned above, other 

local features of the segmented object, such as volume size, 
sphericity, compactness, maximum and minimum HU are 
also calculated for the rule-based filtering.  

III. EXPERIMENTAL RESULTS

A database of 50 thoracic CT scans was used to evaluate 
the effectiveness of the proposed method. Each scan was read 
individually by three experienced thoracic radiologists to 
produce a gold standard of 52 GGO nodules (part-solid and 
non-solid), with diameters ranging from 4mm to 20mm. Slice 
thickness varied from 1.0mm to 2.0mm and the total slice 
number for each scan varied from 124 to 316 with an average 
of 172 per-scan. The X-ray tube current ranged from 60mA to 
325mA. Table 1 summarizes the performance of the proposed 
method. 48 of 52 GGO nodules were detected with an 
average detection rate of about 92.3% and false positive rates 
of approximately 12.7/scan (0.07/slice).  

Fig. 7 shows examples of different types of detected GGO 
nodules. As discussed in section II, a high spherical 
concentration can be obtained by thresholding the shape 
index map. Therefore, different shape index thresholds 
produce different nodule detection performances (detection 
sensitivities and specificities). Fig. 8 shows the method’s 
performance for 11 different high shape index thresholds, 
ranging from 0.89 to 0.99. It is noted that a shape index 
thresholding value of 0.91 provides an optimal overall 
performance with a higher detection rate (about 92.3%) and a 
relatively small FP rate (about 0.07/slice).  

Table 1 GGO Nodule detection performance (on a database of 50 
scans with 52 GGO nodules)

Methods Nodule
detected

Detection rate FP Per-scan 

Proposed method  48 92.3% 12.7/scan 
(0.07/slice) 

Fig. 7 Low contrast GGO nodules detected by the proposed method 
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Fig. 8 Performance evaluation for GGO nodules with 11 different high shape 
index thresholding values ranging from 0.89 to 0.99. 

IV. CONCLUSIONS

In this paper, a shape-based method is proposed for the 
detection of GGO nodules. Anti-geometric diffusion is used 
as a pre-processing step for image enhancement which 
provides a solid foundation for the accurate calculation of 
voxel based geometric features. The shape features 
characterize the local geometric information while being 
independent of image intensity. This is the main reason that 
the proposed algorithm is able to detect not only 
non-spherical GGO nodules containing spherical elements, 
but also the very low contrast GGO nodules. An adaptive 
thresholding method is employed to efficiently segment the 
potential nodule objects and rule-based filtering is finally 
used to further remove false positive regions. 

The high performance of the proposed method with respect 
to sensitivity of 92.3% and FP at 0.07/slice provides a good 
basis for a lung GGO CAD system and suggests promising 
potential for clinical application. 
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