
 

  

Abstract—Aim of this paper is to evaluate the diagnostic 
contribution of various types of texture features in 
discrimination of hepatic tissue in abdominal non-enhanced 
Computed Tomography (CT) images. Regions of Interest 
(ROIs) corresponding to the classes: normal liver, cyst, 
hemangioma, and hepatocellular carcinoma were drawn by an 
experienced radiologist. For each ROI, five distinct sets of 
texture features are extracted using First Order Statistics 
(FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray 
Level Difference Method (GLDM), Laws’ Texture Energy 
Measures (TEM), and Fractal Dimension Measurements 
(FDM). In order to evaluate the ability of the texture features 
to discriminate the various types of hepatic tissue, each set of 
texture features, or its reduced version after genetic algorithm 
based feature selection, was fed to a feed-forward Neural 
Network (NN) classifier. For each NN, the area under Receiver 
Operating Characteristic (ROC) curves (Az) was calculated for 
all one-vs-all discriminations of hepatic tissue. Additionally, the 
total Az for the multi-class discrimination task was estimated. 
The results show that features derived from FOS perform 
better than other texture features (total Az: 0.802±0.083) in the 
discrimination of hepatic tissue.  

I. INTRODUCTION  
HE most common imaging techniques for the detection 
and diagnosis of hepatic lesions include 

Ultrasonography (US), Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), and angiography. 
Although one of the most popular and highly accurate 
techniques is CT after administration of contrast agents, the 
use of iodinated contrast agents is related with renal toxicity 
and allergic reactions. Furthermore, in some cases the 
diagnosis has to be confirmed with invasive procedures 
(biopsies). Computer-Aided Diagnosis (CAD) systems based 
on the combined use of image processing and artificial 
intelligence techniques attract much attention, since they can 
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provide diagnostic assistance to clinicians. 
The use of image derived features has already been 

proposed for the discrimination of hepatic tissue in CT 
images. Mir et al. [1] proposed the use of Spatial Gray Level 
Dependence Matrix (SGLDM), Gray Level Run Length 
Method (GLRLM), and Gray Level Difference Method 
(GLDM) derived texture features in order to discriminate 
normal from malignant hepatic tissue. Chen et al. [2] used 
SGLDM texture features fed a Probabilistic Neural Network 
(P-NN) for the characterization of hepatic tissue (hepatoma 
and hemangioma), and Gletsos et al. [3] used SGLDM based 
features fed to a system of three sequentially placed Neural 
Networks (NNs) to classify hepatic tissue into four 
categories. In [4], Huang et al. proposed the use of auto-
covariance texture features and a Support-Vector-Machine 
(SVM) for discriminating benign from malignant hepatic 
lesions. Seltzer et al. [5] used a wide set of image derived 
features (e.g. size, shape, diffuse of liver disease) to develop 
statistical prediction rules into a computer model to classify 
benign from malignant and hepatocyte-containing vs non–
hepatocyte tissue. Although a lot of effort has been devoted 
to liver tissue characterization from CT images, the potential 
of different texture features has not been systematically 
assessed. 

In this study, five distinct types of texture features are 
used and evaluated in the multi-class discrimination of 
hepatic tissue of Regions of Interest (ROIs) on abdominal 
non-enhanced CT images into four classes: normal liver 
(C1), cyst (C2), hemangioma (C3), and hepatocellular 
carcinoma (C4). 

II. METHODOLOGY 
In order to assess the potential of various texture features 

in the discrimination of hepatic lesions from CT images the 
following steps were preformed: i) five sets of texture 
features were estimated, ii) if the dimensionality of the 
features set was greater than a predefined threshold, a 
Genetic Algorithm (GA) based feature selection method was 
applied, iii) each of the initial and reduced feature sets was 
fed to a NN classifier, and iv) the area under Receiver 
Operating Characteristic (ROC) curves ( zA ) was calculated. 

A. Image Acquisition 
Abdominal non-enhanced CT images with a spatial 

resolution of 512×512 pixels and 8-bit gray-level at the 
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W150+60 window taken from both patients and healthy 
controls were acquired using a Philips CT LX Scanner. A 
total of 38 healthy controls were identified by the 
radiologist, while the diagnosed hepatic lesions from 
patients with C2 (15 patients), C3 (24 patients), and C4 (20 
patients), were validated by needle biopsies, density 
measurements, and the typical pattern of enhancement after 
the intravenous injection of iodine contrast. The patient 
statistics are presented in Table I. The position and size of 
the lesions were defined in CT images by an experienced 
radiologist. It has to be noted that special care was taken in 
identifying ROIs in abnormal liver, so as to include the 
largest possible area of the lesion and avoid the margins of 
the lesion as well as hypodense areas, which could 
correspond to necrotic regions. For each patient a maximum 
of two free-hand ROIs were taken from different slices, 
resulting in a total of 147 ROIs, 76 of which corresponded to 
C1, 19 to C2, 28 to C3, and 24 to C4.  

B. Feature Extraction  
Five distinct sets of features using five texture analysis 

methods were calculated for each ROI: 

First order Statistics: For each ROI, six features were 
obtained [6]: average gray level (avg), standard deviation 
(sd), entropy (ent), coefficient of variance (cv), skewness 
(sk), and kurtosis (kur). 

Spatial Gray-Level Dependence Matrix: Eight texture 
characteristics were calculated from the SGLDM of each 
ROI [6]-[7]: angular second moment (asm), contrast (con), 
correlation (corr), sum of squares (ss), inverse difference 
moment (idm), entropy (ent), homogeneity (hg), cluster 
tendency (clt). Six different values of intersample spacing 
d=1, 2, 4, 6, 8, 12 pixels were used for obtaining SGLDM, 
and the feature values were computed by averaging over 
four uniformly distributed angular directions, 0o, 45o, 90o, 
and 135o for each d. Thus, a total of 48 texture 
characteristics was obtained. 

Gray-Level Difference Matrix: Application of the GLDM to 
each ROI resulted in five features: contrast (con), mean 
(mn), entropy (ent), inverse difference moment (idm), and 
angular second moment (asm) [8]. GLDM was calculated for 
d=1, 2, 3, 4 pixels and the feature values were calculated as 
the mean value of the feature estimations for the directions 
(0, d), (-d, d), (d, 0), (-d, -d) for each d. A total of 20 features 
was derived for each ROI. 

Laws’ Texture Energy Measures: The TEM were derived 
from the vectors L3={1, 2, 1}, E3={-1, 0, 1}, and S3={-1, 2, 
-1} [9]. Convolving those vectors with themselves or with 
one another, the vectors L5={1, 4, 6, 4, 1}, S5={-1, 0, -2, 0, -
1}, and E5={-1, -2, 0, 2, 1} are calculated. Multiplication of 
the column vectors of length 5 with the row vectors of the 
same length results in the 5x5 mask: L5TE5, L5TS5, -E5TS5, 
and R5TR5. After the convolution of each mask with the 
ROIs, texture statistics were applied, estimating absolute 
sum / # of pixels (as), sum of squares / # of pixels (ss), and 
entropy (ent). Thus, the resulting feature vector contained 
twelve texture features. 

Fractal Dimension Texture Measurement: For each ROI, a 
3-dimensional feature vector was estimated from the FDM. 
The components of the feature vector correspond to the 
parameters H(1), H(2), and H(3) of the multiresolution fractal 
feature vector [10]. 

C.  Feature Selection  
In order to reduce the dimensionality of feature sets with 

more than ten features (SGLDM, GLDM and TEM), feature 
selection based on GA was applied [3], [11]. According to 
[3], the use of GAs results in more robust feature vectors as 
compared to other deterministic feature selection techniques, 
in problems related to liver tissue classification from CT 
images. 

D. Neural-Network Classifier  
Each of the feature sets, full or reduced, was used as input 

to a NN based classifier in order to classify ROIs into one of 
the four classes. The used NNs consisted of an input layer 
with a number of input neurons equal to the number of the 
features of the used set, one hidden layer with variable 
number of neurons, and one output layer with two neurons. 
The output neurons encoded the four classes of hepatic 
tissue (00=C1, 01=C2, 10=C3, 11=C4). The back-
propagation algorithm with adaptive learning rate and 
momentum [12] was used for NN training. In order to find 
the appropriate number of hidden neurons, and the values of 
learning rate and momentum for each NN, a trial-and-error 
process was applied. 

In order to obtain reliable results on the potential of the 
feature sets to discriminate the ROIs, the development and 
evaluation of the NNs was based on the bootstrap method. 
To this end, a training set consisting of 147 ROIs was 
sampled with replacement from the available 147 ROIs. The 
ROIs not appearing in the training set were randomly 
allocated into two equally sized sets (validation and testing 
sets). The procedure was repeated for 50 times, resulting in 
50 groups of training, validation and testing sets. For each of 
the 50 groups of sets, a NN using one of the texture feature 
sets was optimally constructed and trained using training and 
validation sets and finally tested in the testing set using ROC 
curves. 

E. ROC Curves Generation 
In the simplest case of a NN with one output neuron the 

 
TABLE I 

PATIENT STATISTICS 

Age (years) 
 

min max mean 
Sex (male/female) 

C1 35 70 55,5 20/18 
C2 44 70 58,3 7/8 
C3 45 63 52,7 11/13 
C4 61 78 70,5 13/7 
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ROC curves are generated by thresholding the output neuron 
in the range [0, 1] and estimating the True Positive (TP) and 
False Positive (FP) rates. 

In the case of NNs with two output neurons the thresholds 
for assigning 0 or 1 to the output neurons changed 
depending on the hepatic class tested again others: e.g. for 
C2 with encoding 01 both thresholds changed parallel from 
[1, 0] towards [0, 1] with a step equal to 0.02. Measurements 
for TP and FP rates were estimated, ROC curve was 
generated and area under ROC curve ( zA ) was calculated. 
For each NN four ROC curves were generated for each 
binary classification task of type “one vs all” e.g. normal vs 
cyst, hemangioma, and hepatocellular carcinoma, and 
consequently four zA  )4,...,1,( , =iA iz  values were 
estimated. A total zA  value was calculated for the four class 
problem using the following equation [13]: 

∑
=

=
4

1
,,

i
iiztotalz pAA  (1) 

where ip  is the prevalence of the thi  class in testing set.  
 The whole process was repeated for all bootstrap testing 

sets. 

III. RESULTS AND DISCUSSION 
ROC curves for the four binary classification tasks, the 

corresponding zA  measurements and total zA  

measurements were calculated using as input each one of the 
total eight feature sets derived. These feature sets correspond 
to the FOS, FDM, TEM, GLDM and SGLDM features with 
full dimensionality and to the reduced TEM, GLDM and 
SGLDM sets obtained after feature selection. The average 
ROC curves obtained using the 50 bootstrap testing sets are 
depicted in Fig. 1, while Table II presents the zA  values 
(mean ± standard deviation) calculated for each feature set 
using the 50 bootstrap testing sets.  

From both Fig. 1 and Table II it is shown that FOS feature 
set outperforms all other full or reduced feature sets in all 
binary decision cases and in the total zA  measurement. FOS 
feature set achieved the maximum mean total zA  
measurement (0.802 ± 0.08). The second best performing 
feature set in terms of total zA  measurement is the TEM set 
in its full (0.754 ± 0.063 using 12 features) or reduced 
version (0.765 ± 0.066 using 8 features). Full or reduced 
TEM feature sets are the second best performing input sets 
in all binary decision cases, but in the case of “cyst vs all” 
where they are outperformed by GLDM feature sets. 
SGLDM and GLDM feature sets seem to follow in total 
performance with rather small differences in total zA  
measurements (mean zA  within the range [0.67 0.72]), 
whereas FDM is the worst performing feature set (total zA : 
0.613±0.059 using only three features). 

 

Fig. 1. Average ROC curves for all “one vs all” classifications using the obtained feature sets 
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TABLE II 
AZ  MEASUREMENTS FOR ALL “ONE VS ALL” CLASSIFICATIONS AND TOTAL AZ  MEASUREMENTS (MEAN ± STANDARD DEVIATION) 

Features # of 
features C1 vs all C2 vs all C3 vs all C4 vs all Total 

TEM 12 0.868±0.069 0.929±0.095 0.696±0.144 0.759±0.095 0.754±0.063 
GLDM 20 0.701±0.079 0.975±0.046 0.603±0.166 0.693±0.125 0.720±0.071 

SGLDM 48 0.734±0.084 0.917±0.089 0.638±0.129 0.672±0.096 0.707±0.060 
FOS 6 0.887±0.057 0.996±0.016 0.765±0.131 0.882±0.101 0.802±0.084 
FDM 3 0.651±0.088 0.585±0.014 0.601±0.184 0.614±0.127 0.613±0.059 

Reduced TEM 8 0.862±0.067 0.935±0.148 0.636±0.157 0.767±0.104 0.765±0.066 
Reduced GLDM 5 0.636±0.085 0.980±0.059 0.580±0.144 0.601±0.111 0.666±0.075 

Reduced SGLDM 8 0.741±0.091 0.864±0.111 0.595±0.150 0.670±0.140 0.703±0.083 

 
It has to be noted that the application of feature 

selection keeps the high zA  measurements of TEM 
feature set, thus providing an equally performing set of 
lower dimensionality (eight out of 12 features were 
selected). Total zA  measurements imply the same for 
SGLDM set (eight out of 48 features were selected). A 
moderate reduce in total zA  measurement was observed 
for the reduced GLDM set (five out of 20 features were 
selected). 

Finally, zA  values for the binary decisions show that 
C3 is the most difficult case to discriminate using the 
texture features used in this study. On the other hand, C2 
is the easiest to discriminate with the maximum zA  value 
of all other liver tissue types (0.996 ± 0.016 obtained 
using FOS features). It has to be noted that high zA  
values for the discrimination “C2 vs all” don’t introduce 
bias in the total zA  values as the prevalence of C2 in 
bootstrap testing sets, which is used in (1), is rather small. 

Future work will evaluate the use of the proposed 
texture features and classifiers in the discrimination of 
other types of liver lesions. Furthermore, a physiology 
based interpretation of the obtained results is in progress 
(e.g. why a texture feature set discriminates better liver 
tissue given the tissue properties it reflects).  

IV. CONCLUSION 

In the current study, the potential of texture feature sets 
was evaluated in characterizing liver ROIs from non-
enhanced CT images. Average ROC and zA  were 
calculated using bootstrap derived testing sets. It has been 
shown that FOS based features provide superior results 
with a mean zA  equal to 0.802.  
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