
 
 

 

  

     Abstract—Rapid interpretation of physiological time-series 
data and accurate assessment of patient state are crucial to 
patient monitoring in critical care.  Algorithms that use 
artificial intelligence techniques have the potential to help 
achieve these tasks, but their development requires well-
annotated patient data.  In this study, we designed a data 
acquisition system for synchronized collection of physiological 
time-series data and clinical event annotations at the bedside to 
support the evaluation of alarm algorithms in real time, and 
implemented this system in a pediatric intensive care unit 
(ICU).   This system captured vital sign measurements at 1 Hz 
and 325 clinical alarms generated by the bedside monitor and 
the 2 instances of false negatives during a monitoring period of 
196 hours.  The alarm annotations in real time at the bedside 
indicate that about 89% of these alarms were clinically-
relevant true positives; 6% were true positives without clinical 
relevance; and 5% were false positives.  These findings show an 
improved specificity of the alarm algorithms in the newer 
generation of bedside monitoring systems and demonstrate that 
the designed data acquisition system enables real-time 
evaluation of patient monitoring algorithms for critical care. 

I. INTRODUCTION 

HILE more physiological time-series data are 
available than ever before in critical care, how to 

integrate, represent, and utilize them in real time has 
remained a challenging clinical and engineering question.  
“Intelligent” computer algorithms that recognize patterns in 
the association between physiological time-series data and 
clinical events could shed light on this question.  Crucial to 
the development of such algorithms are real patient data and 
a way to reconstruct the clinical context under which these 
data are generated.   
     The reconstruction of clinical context, however, is a 
nontrivial task.  In previous studies, data acquisition in the 
ICU focused primarily on collecting physiological signals 
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from the bedside monitors and clinical data from patients’ 
medical records or, if at the bedside, using a separate 
acquisition system [1].  Experts then retrospectively 
analyzed these data to derive the clinical context.  Little 
information about the state of the patient and clinical events 
were recorded at the bedside as they occurred.  This 
approach has several limitations. First, because 
physiological data and clinical annotations are collected 
separately, the two datasets can be poorly synchronized. 
Second, physiological data and clinical annotations have 
different time “granularity;” this can make correlation of the 
data ambiguous since it is difficult retrospectively to 
determine the timing of a clinical event down to seconds. 
Third, in the ICU setting, it has not been feasible to record 
everything that might be useful retrospectively; thus, clinical 
annotations are collected based on projected future research 
needs.  Retrospectively, however, additional clinical 
information is often needed. Reconstructing the clinical 
context with these limitations consequently results in 
significant uncertainties and introduces assumptions that can 
make subsequent results largely speculative [1]. 
     To help obtain the true clinical context, this study 
introduces a system that enables synchronized collection of 
physiological data with bedside clinical event annotation.  
This system has been implemented in a pediatric ICU and 
has been used to evaluate both the bedside monitor’s alarm 
algorithms and “intelligent” alarm algorithms in real time.  

II. METHODS 

A. Physiological Data Collection    
     The Physiological Data Collection Unit is an automated 
module of the data acquisition system residing on a standard 
laptop controlled by a trained observer at the bedside.  It 
communicates with the HP Viridian Neonatal Component 
Monitoring System (CMS), the bedside monitor, via an 
RS232 interface (Option 13 for CMS Model 1077A).   Its 
core is a 16-bit application written in Turbo C based on the 
source code of CMS’s interface demo program, CMSCOM 
[2].    
     Collecting all physiological data that the monitor could 
provide would be ideal; however, the maximum bandwidth 
of the communication channel is 38,400 baud.  Due to this 
limitation, the Physiological Data Collection Unit is usually 
set to collect the numeric parameters (e.g., heart rate, blood 
pressure, arterial oxygen saturation) that are consistently and 
frequently monitored.  Data granularity is at 1 Hz, the 
highest frequency at which new values become available. 
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B. Command Center    
     The Command Center controls data transfer, data 
synchronization, and all user-selected modules through the 
main user interface.  The Command Center is written in 
Visual Basic .NET for the ease of creating and modifying 
the user interface, availability of multiple timers, and direct 
access to the SQL server and other database engines using 
the functionality ADO.NET.   
      The Command Center obtains physiological data from 
data text files and transfers them into the database at the 
selected clock times.  This clock is based on the system time 
of the laptop.  The Command Center uses this clock to check 
for newly arrived physiological data in the past two seconds.  
It then time-stamps each set of new data with the time of this 
clock and records the data into the database.  If no new data 
has arrived for a particular numeric parameter, the 
Command Center automatically records a number 
designated for missing values along with the new values of 
other numerics.   

C. Clinical Event Annotation    
     Clinical event recording is done in four cases: 1) the 
bedside monitor sounds an alarm; 2) an algorithm under 
investigation displays an alarm; 3) the patient becomes 
agitated and requires immediate attention when no alarm 
occurs; and 4) medications are being administered or 
discontinued.  When an event occurs, an annotation box, as 
in Figure 1, is activated by alarm information from the 
bedside monitor in case 1, by the algorithm in case 2, or by a 
trained observer in cases 3 and 4.   
     The fields “Begin Time,” “Alarm Type,” and “Alarm 
Severity” are automatically filled when the annotation box 
appears.  “Begin Time” is the time point when the alarm 
starts.  “Alarm Type” is the physiological parameter that 
triggers the alarm.  “Alarm Severity” is given by the 
monitor.  “End Time” is automatically filled in when the 
alarm stops. 
 

 
     Fig. 1.    An example of the annotation box. 
 
     Technical alerts generated by the bedside monitor are 
denoted as “INOP”s.  These are triggered by signal quality 
problems, equipment malfunction, measurement setup 
problems, or ongoing calibration [3].  INOPs are recorded 

into the database but are not annotated by the trained 
observer because their causes are non-clinical.         
     During or after an alarm, the bedside trained observer 
records whether the patient is moving or whether a medical 
procedure is in progress, as well as how the medical staff 
responds to the alarm.  He or she asks the nurse or physician 
at the bedside to classify the alarm into one of three 
categories, as adopted from work by Tsien [4]: TP-R (True 
Positive, Clinically Relevant), TP-I (True Positive, 
Clinically Irrelevant), FP (False Positive).  

D. Database    
     The database is designed using SQL server desktop 
version for its ease in backing up and restoring different 
databases and, more importantly, for its enforced 
transactions mechanism, which ensures the physical 
integrity of each transaction.  These features safeguard data 
integrity and prevent partial or corrupted records from being 
stored.   
     Time synchronization between different physiological 
parameters is achieved by aligning their time stamps.  Time 
synchronization between event recordings is achieved by 
comparing their begin times and end times.  Synchronization 
between physiological data and event recordings is achieved 
by going over all the time intervals defined by the begin 
time and end time of each event and identifying those events 
whose time intervals encompass the time stamp of each 
physiological data point. 

E. Multiple Threading    
     Clinically-relevant events tend to cluster in time.  They 
might be concurrent, overlapping, or in series.  During such 
times, the caregivers are especially occupied such that they 
might not be available or have adequate information to 
classify each alarm.  Our system allows multiple alarm 
messages to coexist and multiple annotation boxes to remain 
open in order to accommodate the annotation process.  This 
is accomplished via multiple threading. 
     The primary thread serves the main user interface, 
initializes new threads, and relays commands to other 
threads in the system.  The main thread has a timer clocking 
at 1 Hz to automatically read, process, and store the 
physiological data.  When an alarm is generated, a new 
thread is initialized and triggers an annotation box to appear 
on the screen.  This new thread will remain active until the 
user finishes entering the annotations about the alarm and 
closes the annotation box.  Thus, concurrent or overlapping 
events can be annotated as the necessary clinical information 
becomes available.     

F.  Gold Standard for Algorithm Evaluation      
     The most difficult part of annotating an alarm-sounding 
event in the ICU is the accurate classification of the alarm.  
Even if the definitions of the alarm classes TP-R, TP-I, or 
FP are clearly disjoint, the complexity of the event or how 
an alarm is classified, by whom, and on what basis could 
make the classification process ambiguous.  Currently, no 
reliable gold standard for alarm classification exists in the 
literature.  In this study, we construct a 2-tier gold standard: 
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we first ask the patient’s nurse or physician to classify an 
alarm-sounding event.  This classification can then be 
revised within 30 minutes since subsequent events during 
this “grace period” could change the nurse’s or physician’s 
initial view of the patient state.  We thus use the patient’s 
condition in the future (the next 30 minutes) to revise the 
human expert’s classification as needed.   

G.   System Evaluation      
     Evaluation of the designed data acquisition system was 
done in three stages: simulation, implementation, and usage.  
During simulation, both unit-level testing and system-level 
testing were performed.  System-level testing was performed 
after each unit was shown to function properly.  The tested 
system was then used to run alarm algorithms in real time in 
a completely functional phase, facilitating “stress” testing. 
     This system has been implemented and used at the 
Multidisciplinary Intensive Care Unit (MICU) of Children’s 
Hospital in Boston.  The study was approved as a part of a 
research protocol by the Institutional Review Board of 
Children’s Hospital.  A patient consent form was required to 
ensure that patients and their families were comfortable with 
the presence of the trained observer.  Patient confidentiality 
and privacy have been protected according to hospital 
guidelines.   

III. RESULTS 
     The data acquisition system for synchronized collection 
of physiological time-series data and clinical event 
annotations at the bedside was tested for over 300 hours in 
sessions lasting from 2 to 12 hours in duration.  Testing 
sessions in the later 196 hours demonstrated reliable 
operation.  CMSCOM was the most robust and independent 
component of the system.  Its function was not disrupted by 
disturbances or faults in other parts of the system.  The 
number of concurrent multiple threads was tested up to 70.         
     The system’s performance for data acquisition was 
consistent.  For the evaluation of alarm algorithms, the 
system performed at a normal level for up to 10 algorithms.  
When trials of more than 10 alarm algorithms were carried 
out simultaneously, the high amount of computation and 
memory usage resulted in lower performance and data loss.  
Such problems were alleviated by decreasing the rate of data 
collection and analysis (e.g., from 1 Hz to 0.5 Hz).  
         Different patients were monitored for different sets of 
physiological parameters.  Some parameters (e.g., heart rate) 
were measured in every patient, while other parameters were 
measured in only some patients.  Table 1 lists the numeric 
parameters according to how frequently they were measured 
during the study period.  
     Sixteen patients participated in this study when the 
designed system was used to evaluate alarm algorithms.  
Five of these patients were so critically ill that the study 
sessions had to end within the first two hours.  These 
patients had the highest alarm rates, above 10 alarms per 
hour, yet no INOPs were generated during their observation.  
The other eleven patients were followed for multiple 

sessions of 2-12 hours each, with an overall total of 196 
monitoring hours. 
     The rates of the two types of alerts varied widely from 
session to session and patient to patient.  Figure 2 is a 
histogram showing the number of patients in each bracket of 
different alarm rates.   
 
 

Always  
monitored 
parameters 

Heart rate (from electrocardiogram) 
Pulse rate (from pulse oximeter) 
Respiratory rate 
Arterial oxygen saturation 

Frequently  
monitored 
parameters 

Arterial line blood pressure (systolic, 
diastolic, mean) 
Noninvasive blood pressure (systolic, 
diastolic, mean) 
Oxygen perfusion 
Venous oxygen saturation 

Less frequently  
monitored 
parameters 

Temperature 
Central venous pressure 
Carbon dioxide level 

Rarely  
monitored 
parameters 

Wedge pressure 
Cardiac output 
Temperature difference 

Table 1.   Monitored numeric parameters                                                            

 
      
      Fig. 2.   Distribution of alarm rates for all patients 

 
     During the 196 monitoring hours, the bedside monitor 
sounded 325 clinical alarms; of these, 290 were true 
positives with clinical relevance, 20 were true positives but 
clinically irrelevant, and 15 were false positives.  Two 
instances of false negatives were observed.  The bedside 
monitor also generated 1768 INOPs.  Unlike alarms, INOPs 
were not specifically indicative of a patient’s condition.  
     Figure 3 depicts a histogram of the number of patients in 
each bracket of different alarm rates for the eleven patients.  
It is in fact a zoomed-in view of Figure 2 for the patients 
whose alarm rates were below 10 alarms per hour.  Three of 
these eleven patients had no alarms.  Others’ alarm rates 
were relatively evenly distributed close to the mean of 1.7 
alarms/hour.  The total 1768 observed INOPs were 
randomly distributed among these patients. 

IV. DISCUSSION 

     This system for synchronized collection of physiological 
data and clinical annotations has been shown to correlate the 
physiological data and clinical event recordings in a 
consistent manner.  Although its performance could be 
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influenced by hardware capabilities, the system achieved 
real-time data collection and evaluation of patient 
monitoring algorithms at the bedside. 

 
Fig. 3. Distribution of alarm rates for patients monitored for 2-12 hour 
sessions. 

 
     A major new finding in this study is the unexpectedly 
low volume of clinical alarms generated by the bedside 
monitor.  In the study by Tsien [5], there were 2942 alarms 
during 298 monitored hours, i.e., about 9.9 alarms/hour.  In 
a similar study by Lawless [6], there were 2176 alarms 
during 928 monitored hours, i.e., about 2.3 alarms/hour.  
Our results show only 325 clinical alarms during 196 
monitored hours, or about 1.7 alarms/hour.  These 
differences may come from 1)  the identification of 
hardware or operational malfunctions as INOPs instead of 
clinical alarms, as illustrated in Table 2; 2) differences 
among patient populations; 3) improvements in biosensors 
and signal processing; and 4) more disease-specific 
algorithms of the newer generation of monitors. 
 
 

Study Average Alarm Rate  
 (Number of Alarms / Hour) 

 Total TP-R TP-I FP 
Tsien 9.87 0.79 0.59 8.49 

Lawless 2.34 0.13 0.62 1.59 
This study (without 

INOPs) 
1.66 1.48 0.10 0.08 

This study (with INOPs) 10.68 1.47 0.11 9.10 
Table 2.   The frequencies of different types of alerts 

 
    While Tsien’s study and this study were carried out at the 
same pediatric intensive care unit, the data collection 
systems and the bedside monitors were different.  The 
patients monitored within the two studies, moreover, were 
different patients, who could be extremely different from 
one another in terms of their clinical conditions.   Thus, it is 
important to consider variation in patient populations, and 
variation within a given patient population, especially given 
the limited number of patients available to this study and the 
resulting reduction in statistical validity and power.    
     Table 2 also shows that the rate of clinically-irrelevant 
true-positive alarms is lower than that in the previous studies 
by about sixfold.  This decrease is further illustrated by the 
comparison of the TP-I alarms in Table 3.  The significant 
reduction in the clinically-irrelevant true alarms is not the 

only evidence for improvement of new monitors: without 
counting INOPs, about 89.2% of all alarms are true positives 
with clinical relevance.  Even with the INOPs counted (and 
thus the false alarm rate being comparable to those in the 
previous studies), the percentage of clinically-significant 
true alarms under the same classification method has 
improved from 8% to 13.8%.   
    
 

Study Percentage of Total Number of Alarms 
in Each Class 

 TP-R TP-I FP 
Tsien 8% 6% 86% 

Lawless 5.5% 26.5% 68% 
This study (without INOPs) 89.2% 6.2% 4.6% 

This study (with INOPs) 13.8% 1.0% 85.2% 
Table 3.  Class distribution of the alarms 
 

     We hypothesize that more sophisticated biosensors and 
signal processing methods have helped reduce noise and 
derive more accurate numeric values.  Specialized 
algorithms, such as HP’s STAR algorithm for detecting ST-
segment elevation, may also have contributed to the 
increased specificity of alarm-sounding decisions [7].  
     In conclusion, the findings in this study suggest an 
improved specificity of new alarm algorithms used by newer 
generation bedside monitoring systems. The process of 
obtaining these findings has demonstrated that the designed 
data acquisition system enables real-time bedside evaluation 
of patient monitoring alarm algorithms for critical care.  This 
system has facilitated accurate collection and correlation of 
physiological time-series data and clinical annotations, as 
well as prospective use of the clinical context in developing 
better patient monitoring algorithms. 
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